happy machine learning(First One)
从前几天起我就开始了愉快的机器学习,这里记录一下学习笔记,我看的是吴恩达老师的视频,这篇博客将会按吴老师的教学目录来集合各优良文章,以及部分的我的个人总结
1、 监督学习与无监督学习
监督:给定一个算法,需要部分数据集有正确的答案
分类和回归:给定一个样本特征 , 我们希望预测其对应的属性值 , 如果 是离散的, 那么这就是一个分类问题,反之,如果 是连续的实数, 这就是一个回归问题。
无监督学习:
聚类算法:给定一组样本特征 , 我们没有对应的属性值 , 而是想发掘这组样本在维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。
鸡尾酒聚会算法:https://blog.csdn.net/mrharvey/article/details/18598605
2、 代价函数
实质为线性函数的拟合度问题
参考https://www.cnblogs.com/luozhenj/articles/7639484.html
相应的代码(python)
https://o-my-chenjian.com/2017/05/26/Cost-Function-Of-ML/
3、梯度下降
这玩意跟dfs一样,拿吴老师的举例,下山,每一步找最陡的下去,最终到最低点
这篇文章写的比较好 https://www.jianshu.com/p/c7e642877b0e
4、多项式回归
概念见这篇文章:https://blog.csdn.net/zoe9698/article/details/82386914
实践见这篇:https://www.cnblogs.com/Belter/p/8530222.html
5、正规方程
公式推导:https://blog.csdn.net/zoe9698/article/details/82419330
python实现:https://www.lmlphp.com/user/3178/article/item/27041/
接下来就是与识别有关的内容,首先是分类问题
6、分类
理论介绍:https://www.cnblogs.com/lsyz/p/8711103.html
然后我找到了skleran这个库,尝试去编写一些代码来进行分析
今天先学会怎么生成数据吧23333
from sklearn import datasets#引入数据集 #构造的各种参数可以根据自己需要调整 X,y=datasets.make_regression(n_samples=200,n_features=2,n_targets=2,noise=1) ###绘制构造的数据### import matplotlib.pyplot as plt plt.figure() plt.scatter(X,y) plt.show()
还有那啥datatest.load_xxxx
今天继续学习这个库
首先是KNN
import numpy as np from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() iris_X = iris.data iris_Y = iris.target # print(iris_X[:2,:]) # print(iris_Y) ##将上面的数据集分成测试集和训练集,其中测试集占30% X_train,X_test,Y_train,Y_test = train_test_split(iris_X,iris_Y,test_size=0.3) ##此时数据打乱了 #print(Y_train) knn = KNeighborsClassifier() ##训练 knn.fit(X_train,Y_train) ##预测是哪种花 print(knn.predict(X_test)) ##打印真实值 print(Y_test)
下面是聚类,2到多维
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2,0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

我们改一下数据来看一下效果
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.3, 0.2,0.1]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.3, 0.2, 0.1],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()

所以差不多应该能理解对应参数的含义了吧,这是二维数据和二维特征
我们用K-Means聚类方法来做聚类,首先选择k=2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本4个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.3, 0.2, 0.1],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
k=3,4只需改一下clusters
我们选择一个效果评判函数:
from sklearn import metrics metrics.calinski_harabaz_score(X, y_pred)
下面是相应的kmeans理论:https://www.cnblogs.com/bourneli/p/3645049.html
happy machine learning(First One)的更多相关文章
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】Python开发工具:Anaconda+Sublime
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...
- 【Machine Learning】机器学习及其基础概念简介
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】决策树案例:基于python的商品购买能力预测系统
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- [Machine Learning] Active Learning
1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi ...
- [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...
- machine learning基础与实践系列
由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的 ...
- matlab基础教程——根据Andrew Ng的machine learning整理
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...
- Machine Learning
Recently, I am studying Maching Learning which is our course. My English is not good but this course ...
随机推荐
- OpenSSL 使用 base64 编码/解码(liang19890820)
关于 OpenSSL 的介绍及安装请参见:Windows 下编译 OpenSSL 下面主要介绍有关 OpenSSL 使用 base64 编码/解码. 简述 编码解码 更多参考 编码/解码 #inclu ...
- 在Android手机上学习socket程序
我们都知道Android手机是基于Linux系统的,在没有Linux环境,但是想学习socket编程的同学可以在Android手机中试试,利用ndk编译可执行文件在Android手机中运行.不同于动态 ...
- Airflow 使用简介
- OpenGL图形渲染管线、VBO、VAO、EBO概念及用例
图形渲染管线(Pipeline) 图形渲染管线指的是对一些原始数据经过一系列的处理变换并最终把这些数据输出到屏幕上的整个过程. 图形渲染管线的整个处理流程可以被划分为几个阶段,上一个阶段的输出数据作为 ...
- WPF 3D模型的一个扩展方法
原文:WPF 3D模型的一个扩展方法 在WPF 3D中,我们常常需要改变一个ModelVisual3D对象的颜色. 先说说ModelVisual3D,本质上3D模型都是由一个个的三角形构成的,并且经过 ...
- VCL to UniGUI Migration Wizard
Free Evaluation Edition of The Automatic Migration Scripting Wizard For Converting Legacy Delphi Cod ...
- Domain adaptation:连接机器学习(Machine Learning)与迁移学习(Transfer Learning)
domain adaptation(域适配)是一个连接机器学习(machine learning)与迁移学习(transfer learning)的新领域.这一问题的提出在于从原始问题(对应一个 so ...
- sql like N'%...%' 在C#里的写法
StringBuilder sb = new StringBuilder(); List<SqlParameter> parameters =new List<SqlParamete ...
- 使用aws和tomcat搭建服务器过程中的一些坑.
在国外没啥事做, 考前也不愿意复习, 看到aws能免费试用一年, 于是就试着搞了搞, 就准备搭建个个人网站玩玩. aws的注册与创建实例 首先个人感觉这个东西使用起来还是很方便的, 一开始注册完验证完 ...
- WPF绑定到linq表达式
using ClassLibrary;using System;using System.Collections.Generic;using System.Collections.ObjectMode ...