压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

IRLS(iteratively reweighted least squares)算法

(本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快)

IRLS(iteratively reweighted least squares)算法是压缩感知重建算法当中的一个基本算法。主要是为了解决

minu||u||pp, subject to Φu=b

本文采用的代码是加入权重之后的

minu∑i=1Nwiu2i, subject to Φu=b

上式中的权重wi是根据前面一次ui−1计算得到的,具体的计算公式为:

wi=|u(n−1)i|p−2

这样上面的最优化问题可以求解得到:

u(n)=QnΦT(ΦQnΦT)−1b

其中Qn是一个对角矩阵,具体值从1/wi=|u(n−1)i|2−p得到。详细具体的解释请看参考文献1。


代码

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)

python代码

#coding: utf-8
'''
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为OMP算法 ,图像按列进行处理
# email:ncuzhangben@qq.com,
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'''
#导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))
#print (im.shape, im.dtype)uint8 #生成高斯随机测量矩阵
sampleRate = 0.7 #采样率
Phi = np.random.randn(256, 256)
u, s, vh = np.linalg.svd(Phi)
Phi = u[:256*sampleRate,] #将测量矩阵正交化 #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #IRLS算法函数
def cs_irls(y,T_Mat):
L=math.floor((y.shape[0])/4)
hat_x_tp=np.dot(T_Mat.T ,y)
epsilong=1
p=1 # solution for l-norm p
times=1
while (epsilong>10e-9) and (times<L): #迭代次数
weight=(hat_x_tp**2+epsilong)**(p/2-1)
Q_Mat=np.diag(1/weight)
#hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y
temp=np.dot(np.dot(T_Mat,Q_Mat),T_Mat.T)
temp=np.dot(np.dot(Q_Mat,T_Mat.T),np.linalg.inv(temp))
hat_x=np.dot(temp,y)
if(np.linalg.norm(hat_x-hat_x_tp,2) < np.sqrt(epsilong)/100):
epsilong = epsilong/10
hat_x_tp=hat_x
times=times+1
return hat_x #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_irls(img_cs_1d[:,i],Theta_1d) #利用IRLS算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

%matlab版本用的R2010b
function Demo_CS_IRLS()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the DCT basis is selected as the sparse representation dictionary
% instead of seting the whole image as a vector, I process the image in the
% fashion of column-by-column, so as to reduce the complexity. % Author: Chengfu Huo, roy@mail.ustc.edu.cn, http://home.ustc.edu.cn/~roy
% Reference: R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms
% for Compressed Sensing,” 2008.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img); %------------ form the measurement matrix and base matrix ---------------
Phi=randn(floor(height/3),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(height/3),1]); % normalize each column mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;
for i=1:width
column_rec=cs_irls(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % sparse representation
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform %------------ show the results --------------------
figure(1)
subplot(2,2,1),imagesc(img),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)))
subplot(2,2,4),imagesc(img_rec_1d),title(strcat('1d rec img ',num2str(psnr),'dB')) %****************************************
function hat_x=cs_irls(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4 hat_x_tp=T_Mat'*y;
epsilong=1;
p=1; % solution for l-norm p
times=1;
while (epsilong>10e-9) && (times<length(y)/4)
weight=(hat_x_tp.^2+epsilong).^(p/2-1);
Q_Mat=diag(1./weight,0);
hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y;
if(norm(hat_x-hat_x_tp,2) < sqrt(epsilong)/100)
epsilong=epsilong/10;
end
hat_x_tp=hat_x;
times=times+1;
end

参考文献

1、R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms for Compressed Sensing,” 2008.

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之IRLS算法python实现的更多相关文章

  1. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

  7. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

随机推荐

  1. Java描述设计模式(19):模板方法模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 通常一款互联网应用的开发流程如下:业务需求,规划产品,程序开发,测试交付.现在基于模板方法模式进行该过程描述. public c ...

  2. php mkdir不能创建文件夹的原因

    php mkdir不能创建文件夹的原因 1 权限问题2 open_basedir设置问题 参考方法http://newmiracle.cn/?p=2896

  3. php自定义截取中文字符串-utf8版

    php自定义截取中文字符串-utf8版 UTF-8的编码范围(utf-8使用1-6个字节编码字符,实际上只使用了1-4字节): 1个字节:00——7F 2个字节:C080——DFBF 3个字符:E08 ...

  4. vue登录功能和将商品添加至购物车实现

     2.1: 学子商城--用户登录 用户登录商城用户操作行为,操作用户输入用户名和密码 点击登录按钮,一种情况登录成功 一种情况登录失败 "用户名或密码有误请检查" 2.2:如何实现 ...

  5. C语言程序设计100例之(10):最大公约数

    例10        最大公约数 问题描述 有三个正整数a,b,c(0<a,b,c<10^6),其中c不等于b.若a和c的最大公约数为b,现已知a和b,求满足条件的最小的c. 输入数据 第 ...

  6. Look into Bitmap images

    What's a Bitmap image? I'm not going to explain the differences between raster and vector images, no ...

  7. Spark性能优化指南——基础篇(转)

    [转]Spark性能优化指南——基础篇 http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&am ...

  8. jenkins手把手教你从入门到放弃03-安装Jenkins时web界面出现该jenkins实例似乎已离线

    简介 很久没有安装jenkins了,因为之前用的的服务器一直正常使用,令人郁闷的是,之前用jenkins一直没出过这个问题. 令人更郁闷的是,我尝试了好多个历史版本和最新版本,甚至从之前的服务器把je ...

  9. pat 1149 Dangerous Goods Packaging(25 分)

    1149 Dangerous Goods Packaging(25 分) When shipping goods with containers, we have to be careful not ...

  10. nyoj 40-公约数和公倍数(gcd)

    40-公约数和公倍数 内存限制:64MB 时间限制:1000ms Special Judge: No accepted:30 submit:47 题目描述: 小明被一个问题给难住了,现在需要你帮帮忙. ...