压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

IRLS(iteratively reweighted least squares)算法

(本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快)

IRLS(iteratively reweighted least squares)算法是压缩感知重建算法当中的一个基本算法。主要是为了解决

minu||u||pp, subject to Φu=b

本文采用的代码是加入权重之后的

minu∑i=1Nwiu2i, subject to Φu=b

上式中的权重wi是根据前面一次ui−1计算得到的,具体的计算公式为:

wi=|u(n−1)i|p−2

这样上面的最优化问题可以求解得到:

u(n)=QnΦT(ΦQnΦT)−1b

其中Qn是一个对角矩阵,具体值从1/wi=|u(n−1)i|2−p得到。详细具体的解释请看参考文献1。


代码

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)

python代码

#coding: utf-8
'''
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为OMP算法 ,图像按列进行处理
# email:ncuzhangben@qq.com,
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'''
#导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))
#print (im.shape, im.dtype)uint8 #生成高斯随机测量矩阵
sampleRate = 0.7 #采样率
Phi = np.random.randn(256, 256)
u, s, vh = np.linalg.svd(Phi)
Phi = u[:256*sampleRate,] #将测量矩阵正交化 #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #IRLS算法函数
def cs_irls(y,T_Mat):
L=math.floor((y.shape[0])/4)
hat_x_tp=np.dot(T_Mat.T ,y)
epsilong=1
p=1 # solution for l-norm p
times=1
while (epsilong>10e-9) and (times<L): #迭代次数
weight=(hat_x_tp**2+epsilong)**(p/2-1)
Q_Mat=np.diag(1/weight)
#hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y
temp=np.dot(np.dot(T_Mat,Q_Mat),T_Mat.T)
temp=np.dot(np.dot(Q_Mat,T_Mat.T),np.linalg.inv(temp))
hat_x=np.dot(temp,y)
if(np.linalg.norm(hat_x-hat_x_tp,2) < np.sqrt(epsilong)/100):
epsilong = epsilong/10
hat_x_tp=hat_x
times=times+1
return hat_x #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_irls(img_cs_1d[:,i],Theta_1d) #利用IRLS算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

%matlab版本用的R2010b
function Demo_CS_IRLS()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the DCT basis is selected as the sparse representation dictionary
% instead of seting the whole image as a vector, I process the image in the
% fashion of column-by-column, so as to reduce the complexity. % Author: Chengfu Huo, roy@mail.ustc.edu.cn, http://home.ustc.edu.cn/~roy
% Reference: R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms
% for Compressed Sensing,” 2008.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img); %------------ form the measurement matrix and base matrix ---------------
Phi=randn(floor(height/3),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(height/3),1]); % normalize each column mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;
for i=1:width
column_rec=cs_irls(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % sparse representation
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform %------------ show the results --------------------
figure(1)
subplot(2,2,1),imagesc(img),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)))
subplot(2,2,4),imagesc(img_rec_1d),title(strcat('1d rec img ',num2str(psnr),'dB')) %****************************************
function hat_x=cs_irls(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4 hat_x_tp=T_Mat'*y;
epsilong=1;
p=1; % solution for l-norm p
times=1;
while (epsilong>10e-9) && (times<length(y)/4)
weight=(hat_x_tp.^2+epsilong).^(p/2-1);
Q_Mat=diag(1./weight,0);
hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y;
if(norm(hat_x-hat_x_tp,2) < sqrt(epsilong)/100)
epsilong=epsilong/10;
end
hat_x_tp=hat_x;
times=times+1;
end

参考文献

1、R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms for Compressed Sensing,” 2008.

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之IRLS算法python实现的更多相关文章

  1. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

  7. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

随机推荐

  1. 使用CBrother的CLIB库调用windows的API

    使用CBrother的CLIB库调用windows的API 2.1.0版本CBrother加入了CLib库,最新需要写一个工具,根据路径查杀一个Windows进程,研究了一下,CLib库的用法,感觉还 ...

  2. ASP.NET Core 1.0: 指定Default Page

    前不久写过一篇Blog<指定Static File中的文件作为Default Page>,详细参见链接. 然而,今天偶然发现了一个更加简洁的方法,直接使用Response的Redirect ...

  3. C# II: Class ViewModelBase and RelayCommand in MVVM

    好久不写WPF和MVVM,新建一个Project后,想起来ViewModelBase和RelayCommand没有.以下Code摘自MSDN上的Article:Patterns - WPF Apps ...

  4. 比较一下inner join(可直接简写为join)和where直接关联

    SELECT * FROM A ,B WHERE A.ID = B.ID 是比较常用的2个表关联.之前一直用这个,后来换了家公司发现这家公司的报表大多数都是用inner join,稍微研究了一下.查阅 ...

  5. Python Excel 绘制柱形图

    本文主要讲述如何使用Python操作Excel绘制柱形图. 相关代码请参考 https://github.com/RustFisher/python-playground 本文链接:https://w ...

  6. pat 1077 Kuchiguse(20 分) (字典树)

    1077 Kuchiguse(20 分) The Japanese language is notorious for its sentence ending particles. Personal ...

  7. SpringSecurity动态加载用户角色权限实现登录及鉴权

    很多人觉得Spring Security实现登录验证很难,我最开始学习的时候也这样觉得.因为我好久都没看懂我该怎么样将自己写的用于接收用户名密码的Controller与Spring Security结 ...

  8. Feature Fusion for Online Mutual Knowledge Distillation (CVPR 2019)

    一.解决问题 如何将特征融合与知识蒸馏结合起来,提高模型性能 二.创新点 支持多子网络分支的在线互学习 子网络可以是相同结构也可以是不同结构 应用特征拼接.depthwise+pointwise,将特 ...

  9. C语言与汇编语言混合编程实验

    混合编程方法: 模块链接法 汇编指令嵌入法 1: 模块链接法则 模块链接法是指分别用汇编语言和C语言实现独立的模块(或子程序),再用链接程序把各模块生成的obj文件连接成一个可执行程序. 1:C语言调 ...

  10. 读完此文让你了解各个queue的原理

    队列是一种特殊的线性表,它只允许在表的前端进行删除操作,而在表的后端进行插入操作.通俗来讲,就是一个队列中,早来的排在前面,后来的就在队尾,而这个队列大多只有一个出口和入口的单项队列.Queue的重要 ...