压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

IRLS(iteratively reweighted least squares)算法

(本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快)

IRLS(iteratively reweighted least squares)算法是压缩感知重建算法当中的一个基本算法。主要是为了解决

minu||u||pp, subject to Φu=b

本文采用的代码是加入权重之后的

minu∑i=1Nwiu2i, subject to Φu=b

上式中的权重wi是根据前面一次ui−1计算得到的,具体的计算公式为:

wi=|u(n−1)i|p−2

这样上面的最优化问题可以求解得到:

u(n)=QnΦT(ΦQnΦT)−1b

其中Qn是一个对角矩阵,具体值从1/wi=|u(n−1)i|2−p得到。详细具体的解释请看参考文献1。


代码

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)

python代码

#coding: utf-8
'''
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为OMP算法 ,图像按列进行处理
# email:ncuzhangben@qq.com,
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'''
#导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))
#print (im.shape, im.dtype)uint8 #生成高斯随机测量矩阵
sampleRate = 0.7 #采样率
Phi = np.random.randn(256, 256)
u, s, vh = np.linalg.svd(Phi)
Phi = u[:256*sampleRate,] #将测量矩阵正交化 #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #IRLS算法函数
def cs_irls(y,T_Mat):
L=math.floor((y.shape[0])/4)
hat_x_tp=np.dot(T_Mat.T ,y)
epsilong=1
p=1 # solution for l-norm p
times=1
while (epsilong>10e-9) and (times<L): #迭代次数
weight=(hat_x_tp**2+epsilong)**(p/2-1)
Q_Mat=np.diag(1/weight)
#hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y
temp=np.dot(np.dot(T_Mat,Q_Mat),T_Mat.T)
temp=np.dot(np.dot(Q_Mat,T_Mat.T),np.linalg.inv(temp))
hat_x=np.dot(temp,y)
if(np.linalg.norm(hat_x-hat_x_tp,2) < np.sqrt(epsilong)/100):
epsilong = epsilong/10
hat_x_tp=hat_x
times=times+1
return hat_x #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_irls(img_cs_1d[:,i],Theta_1d) #利用IRLS算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

%matlab版本用的R2010b
function Demo_CS_IRLS()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the DCT basis is selected as the sparse representation dictionary
% instead of seting the whole image as a vector, I process the image in the
% fashion of column-by-column, so as to reduce the complexity. % Author: Chengfu Huo, roy@mail.ustc.edu.cn, http://home.ustc.edu.cn/~roy
% Reference: R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms
% for Compressed Sensing,” 2008.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img); %------------ form the measurement matrix and base matrix ---------------
Phi=randn(floor(height/3),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(height/3),1]); % normalize each column mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;
for i=1:width
column_rec=cs_irls(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % sparse representation
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform %------------ show the results --------------------
figure(1)
subplot(2,2,1),imagesc(img),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)))
subplot(2,2,4),imagesc(img_rec_1d),title(strcat('1d rec img ',num2str(psnr),'dB')) %****************************************
function hat_x=cs_irls(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4 hat_x_tp=T_Mat'*y;
epsilong=1;
p=1; % solution for l-norm p
times=1;
while (epsilong>10e-9) && (times<length(y)/4)
weight=(hat_x_tp.^2+epsilong).^(p/2-1);
Q_Mat=diag(1./weight,0);
hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y;
if(norm(hat_x-hat_x_tp,2) < sqrt(epsilong)/100)
epsilong=epsilong/10;
end
hat_x_tp=hat_x;
times=times+1;
end

参考文献

1、R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms for Compressed Sensing,” 2008.

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之IRLS算法python实现的更多相关文章

  1. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

  7. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

随机推荐

  1. C 总结 | 复习注意点

    1.1 C预处理 常见错误 预处理错误 #include "" 和 <> 使用错误 "No such....." 更改“” 或者<> 或 ...

  2. LINUX 内核移植以及网卡驱动添加

    我用的板子是sama5d3xek,原来板子内核是linux-at91-3.13,升级使用linux-at91-4.10 首先去官网下载一个linux—at91-4.10压缩包,然后在ubuntu里解压 ...

  3. mysql group by分组查询后 查询个数

    mysql group by分组查询后 查询个数2个方法随便你选 <pre>select count(distinct colA) from table1;</pre>< ...

  4. redis 数据库主从不一致问题解决方案

     在聊数据库与缓存一致性问题之前,先聊聊数据库主库与从库的一致性问题. 问:常见的数据库集群架构如何? 答:一主多从,主从同步,读写分离. 如上图: (1)一个主库提供写服务 (2)多个从库提供读服务 ...

  5. 软件 ---- idea启动

    1.将配置转移到别的盘符,避免重做系统后,之前的配置就没了 找到安装的位置,默认安装的话地址一般是 C:\Program Files\JetBrains\IntelliJ IDEA 2017.2 ID ...

  6. Linux之ant安装部署

    接下来呢,就开始ant的部署,具体分为如下几个步骤: 1. 获取介质: 在apache的官网中直接下载,下载地址为:http://ant.apache.org/ 下载需要的版本即可: 2. 复制到us ...

  7. (二十一)golang--字符串中的函数

    golang中ascii对应的字符占一个字节,而汉字占三个字节. (1)统计字符串的长度len (2)字符串遍历,同时处理有中文的问题r:=[]rune(str) (3)字符串转整数:n,err:= ...

  8. Mac上sonar插件的安装及使用

    本文主要讲解sonar的安装及使用. 分为两个维度来讲解 1. 使用sonarqube以及自带的Derby数据库 2. 使用sonarqube以及配置mysql数据库 ---------------- ...

  9. lqb 基础练习 查找整数 (遍历)

    基础练习 查找整数 时间限制:1.0s   内存限制:256.0MB     问题描述 给出一个包含n个整数的数列,问整数a在数列中的第一次出现是第几个. 输入格式 第一行包含一个整数n. 第二行包含 ...

  10. AV时间戳dts,pts。从ffmpeg解码过程看过来。

    解码过程中,dts由媒体流读入的包推动(解码包中的dts标记),dts在前进.pts是在dts前进到某处(截点)而进行动作的标记. 物理时间自然流逝,dts可以被控制同步与物理时间同一脚步节奏,也可以 ...