压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现
压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之SP算法python实现
压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OLS算法python实现
压缩感知重构算法之IRLS算法python实现
IRLS(iteratively reweighted least squares)算法
(本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快)
IRLS(iteratively reweighted least squares)算法是压缩感知重建算法当中的一个基本算法。主要是为了解决
本文采用的代码是加入权重之后的
上式中的权重wi是根据前面一次ui−1计算得到的,具体的计算公式为:
这样上面的最优化问题可以求解得到:
其中Qn是一个对角矩阵,具体值从1/wi=|u(n−1)i|2−p得到。详细具体的解释请看参考文献1。
代码
要利用python实现,电脑必须安装以下程序
- python (本文用的python版本为3.5.1)
- numpy python包(本文用的版本为1.10.4)
- scipy python包(本文用的版本为0.17.0)
- pillow python包(本文用的版本为3.1.1)
python代码
#coding: utf-8
'''
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为OMP算法 ,图像按列进行处理
# email:ncuzhangben@qq.com,
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'''
#导入集成库
import math
# 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包
#读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))
#print (im.shape, im.dtype)uint8
#生成高斯随机测量矩阵
sampleRate = 0.7 #采样率
Phi = np.random.randn(256, 256)
u, s, vh = np.linalg.svd(Phi)
Phi = u[:256*sampleRate,] #将测量矩阵正交化
#生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d)
#随机测量
img_cs_1d=np.dot(Phi,im)
#IRLS算法函数
def cs_irls(y,T_Mat):
L=math.floor((y.shape[0])/4)
hat_x_tp=np.dot(T_Mat.T ,y)
epsilong=1
p=1 # solution for l-norm p
times=1
while (epsilong>10e-9) and (times<L): #迭代次数
weight=(hat_x_tp**2+epsilong)**(p/2-1)
Q_Mat=np.diag(1/weight)
#hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y
temp=np.dot(np.dot(T_Mat,Q_Mat),T_Mat.T)
temp=np.dot(np.dot(Q_Mat,T_Mat.T),np.linalg.inv(temp))
hat_x=np.dot(temp,y)
if(np.linalg.norm(hat_x-hat_x_tp,2) < np.sqrt(epsilong)/100):
epsilong = epsilong/10
hat_x_tp=hat_x
times=times+1
return hat_x
#重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_irls(img_cs_1d[:,i],Theta_1d) #利用IRLS算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵
#显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()
matlab代码
%matlab版本用的R2010b
function Demo_CS_IRLS()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the DCT basis is selected as the sparse representation dictionary
% instead of seting the whole image as a vector, I process the image in the
% fashion of column-by-column, so as to reduce the complexity.
% Author: Chengfu Huo, roy@mail.ustc.edu.cn, http://home.ustc.edu.cn/~roy
% Reference: R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms
% for Compressed Sensing,” 2008.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img);
%------------ form the measurement matrix and base matrix ---------------
Phi=randn(floor(height/3),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(height/3),1]); % normalize each column
mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end
%--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal
%-------- recover using omp ------------
sparse_rec_1d=zeros(height,width);
Theta_1d=Phi*mat_dct_1d;
for i=1:width
column_rec=cs_irls(img_cs_1d(:,i),Theta_1d,height);
sparse_rec_1d(:,i)=column_rec'; % sparse representation
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform
%------------ show the results --------------------
figure(1)
subplot(2,2,1),imagesc(img),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)))
subplot(2,2,4),imagesc(img_rec_1d),title(strcat('1d rec img ',num2str(psnr),'dB'))
%****************************************
function hat_x=cs_irls(y,T_Mat,m)
% y=T_Mat*x, T_Mat is n-by-m
% y - measurements
% T_Mat - combination of random matrix and sparse representation basis
% m - size of the original signal
% the sparsity is length(y)/4
hat_x_tp=T_Mat'*y;
epsilong=1;
p=1; % solution for l-norm p
times=1;
while (epsilong>10e-9) && (times<length(y)/4)
weight=(hat_x_tp.^2+epsilong).^(p/2-1);
Q_Mat=diag(1./weight,0);
hat_x=Q_Mat*T_Mat'*inv(T_Mat*Q_Mat*T_Mat')*y;
if(norm(hat_x-hat_x_tp,2) < sqrt(epsilong)/100)
epsilong=epsilong/10;
end
hat_x_tp=hat_x;
times=times+1;
end
参考文献
1、R. Chartrand and W. Yin, “Iteratively Reweighted Algorithms for Compressed Sensing,” 2008.
欢迎python爱好者加入:学习交流群 667279387
压缩感知重构算法之IRLS算法python实现的更多相关文章
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC
主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...
- 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘
主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...
- 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...
- 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...
随机推荐
- 使用CBrother的CLIB库调用windows的API
使用CBrother的CLIB库调用windows的API 2.1.0版本CBrother加入了CLib库,最新需要写一个工具,根据路径查杀一个Windows进程,研究了一下,CLib库的用法,感觉还 ...
- ASP.NET Core 1.0: 指定Default Page
前不久写过一篇Blog<指定Static File中的文件作为Default Page>,详细参见链接. 然而,今天偶然发现了一个更加简洁的方法,直接使用Response的Redirect ...
- C# II: Class ViewModelBase and RelayCommand in MVVM
好久不写WPF和MVVM,新建一个Project后,想起来ViewModelBase和RelayCommand没有.以下Code摘自MSDN上的Article:Patterns - WPF Apps ...
- 比较一下inner join(可直接简写为join)和where直接关联
SELECT * FROM A ,B WHERE A.ID = B.ID 是比较常用的2个表关联.之前一直用这个,后来换了家公司发现这家公司的报表大多数都是用inner join,稍微研究了一下.查阅 ...
- Python Excel 绘制柱形图
本文主要讲述如何使用Python操作Excel绘制柱形图. 相关代码请参考 https://github.com/RustFisher/python-playground 本文链接:https://w ...
- pat 1077 Kuchiguse(20 分) (字典树)
1077 Kuchiguse(20 分) The Japanese language is notorious for its sentence ending particles. Personal ...
- SpringSecurity动态加载用户角色权限实现登录及鉴权
很多人觉得Spring Security实现登录验证很难,我最开始学习的时候也这样觉得.因为我好久都没看懂我该怎么样将自己写的用于接收用户名密码的Controller与Spring Security结 ...
- Feature Fusion for Online Mutual Knowledge Distillation (CVPR 2019)
一.解决问题 如何将特征融合与知识蒸馏结合起来,提高模型性能 二.创新点 支持多子网络分支的在线互学习 子网络可以是相同结构也可以是不同结构 应用特征拼接.depthwise+pointwise,将特 ...
- C语言与汇编语言混合编程实验
混合编程方法: 模块链接法 汇编指令嵌入法 1: 模块链接法则 模块链接法是指分别用汇编语言和C语言实现独立的模块(或子程序),再用链接程序把各模块生成的obj文件连接成一个可执行程序. 1:C语言调 ...
- 读完此文让你了解各个queue的原理
队列是一种特殊的线性表,它只允许在表的前端进行删除操作,而在表的后端进行插入操作.通俗来讲,就是一个队列中,早来的排在前面,后来的就在队尾,而这个队列大多只有一个出口和入口的单项队列.Queue的重要 ...