题目链接:http://poj.org/problem?id=3177

题意:求最少加几条边使得没对点都有至少两条路互通。

题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后就是各个连通块之间的问题。

也就是说只要求一下桥,然后某个连通块桥的个数位1的总数,结果就是(ans+1)/2。为什么是这个结果自行画图

理解一下,挺好理解的。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 1e5 + 10;
const int M = 2e5 + 10;
struct TnT {
int v , next;
bool cut;
}edge[M];
int head[N] , e;
int Low[N] , DFN[N] , Stack[N] , Belong[N];
bool Instack[N];
int Index , top , bridge , block;
void init() {
memset(head , -1 , sizeof(head));
e = 0;
}
void add(int u , int v) {
edge[e].v = v , edge[e].next = head[u] , edge[e].cut = false , head[u] = e++;
}
void Tarjan(int u , int pre) {
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u] ; i != -1 ; i = edge[i].next) {
v = edge[i].v;
if(v == pre) continue;
if(!DFN[v]) {
Tarjan(v , u);
Low[u] = min(Low[u] , Low[v]);
if(Low[v] > DFN[u]) {
bridge++;
edge[i].cut = true;
edge[i^1].cut = true;
}
}
else if(Instack[v]) Low[u] = min(Low[u] , DFN[v]);
}
if(Low[u] == DFN[u]) {
block++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
} while(v != u);
}
}
int du[N];
int main() {
int f , r;
while(~scanf("%d%d" , &f , &r)) {
init();
for(int i = 0 ; i < r ; i++) {
int u , v;
scanf("%d%d" , &u , &v);
add(u , v);
add(v , u);
}
memset(DFN , 0 , sizeof(DFN));
memset(Instack , false , sizeof(Instack));
memset(du , 0 , sizeof(du));
Index = 0 , block = 0 , top = 0;
for(int i = 1 ; i <= f ; i++)
if(!DFN[i]) Tarjan(i , i);
for(int i = 1 ; i <= f ; i++) {
for(int j = head[i] ; j != -1 ; j = edge[j].next) {
if(edge[j].cut) {
du[Belong[i]]++;
}
}
}
int ans = 0;
for(int i = 1 ; i <= block ; i++) {
if(du[i] == 1) {
ans++;
}
}
printf("%d\n" , (ans + 1) / 2);
}
return 0;
}

poj 3177 Redundant Paths(tarjan边双连通)的更多相关文章

  1. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  2. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  3. POJ 3177 Redundant Paths(边双连通分量)

    [题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...

  4. POJ 3177 Redundant Paths 无向图边双联通基础题

    题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当 ...

  5. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  6. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  7. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  8. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  9. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

随机推荐

  1. tensorflow学习笔记——常见概念的整理

    TensorFlow的名字中已经说明了它最重要的两个概念——Tensor和Flow.Tensor就是张量,张量这个概念在数学或者物理学中可以有不同的解释,但是这里我们不强调它本身的含义.在Tensor ...

  2. CMD开放3389端口

    REG ADD HKLM\SYSTEM\CurrentControlSet\Control\Terminal" "Server /v fDenyTSConnections /t R ...

  3. 深入理解JVM-类加载器深入解析(3)

    深入理解JVM-类加载器深入解析(3) 获得ClassLoader的途径 获得当前类的ClassLoader clazz.getClassLoader() 获得当前线程上下文的ClassLoader ...

  4. 【Java例题】3.1 7、11、13的倍数

    1.找出1~5000范围内分别满足如下条件的数: (1) 7或11或13的倍数 (2) 7.11,或7.13或11.13的倍数 (3) 7.11和13的倍数. package chapter3; pu ...

  5. Source Maps简介

    提高网站性能最简单的方式之一是合并压缩JavaScript和CSS文件.但是当你需要调试这些压缩文件中的代码时,那将会是一场噩梦.不过也不用担心,souce maps将会帮你解决这一问题. Sourc ...

  6. 8.9 day30 并发编程 进程理论 进程方法 守护进程 互斥锁

    多道技术 1.空间上的复用 多个程序共用一套计算机硬件 多道技术原理 2.时间上的复用 ​ 切换+保存状态 ​ 1.当一个程序遇到IO操作 操作系统会剥夺该程序的CPU执行权限( 提高了CPU的利用率 ...

  7. ubuntu 输出 log 基础

    自定义日志文件 nohup your_command > my_nohup.log 2>&1 & #(将日志输出在my_nohup.log文件中,并将stderr重定向至s ...

  8. 后端开发之chrome开发者模式

    1. 场景描述 java开发前后端分离模式越来越流行,后端人员可以直接使用swagger进行接口调试(前后端分离之Swagger2),但是调试的时候,需要设置入参,假如该模块不是软件老王开发的,接别人 ...

  9. python webdriver 常用元素操作

    1.新建实例 xx_driver = os.path.abspath(r"路径") os.environ["webdriver.xx.driver"] = xx ...

  10. MongoDB的一些高级语法.md

      MongoDB的一些高级语法 AND 和 OR操作 AND操作 OR操作 嵌入式文档 插入 查询 数组(Array)字段 插入 查询 聚合(Aggregation) 筛选数据 修改字段 注意事项 ...