题目链接:http://codeforces.com/problemset/problem/55/D

题意:一个美丽数就是可以被它的每一位的数字整除的数。

给定一个区间,求美丽数的个数。

显然这是一道数位dp,就是满足一个数能被所有位数的lcm整除即可。

一般都会设dp[len][mod][LCM],mod表示余数,LCM表示前len位的lcm。

但是如果直接裸mod会很复杂,于是再想lcm{0,1,2,3,4,5,6,7,8,9}=2520;

而且lcm{a,b,c,d....}{a,b,c,d...表示各个位数)去重之后能被lcm{0,1,2....9}

整除。我们要求的是sum%lcm(a,b,c,d..}==0,所以只要满足

sum%lcm(0,1,2,...9}%lcm(a,b,c,d..}==0即可。于是mod就可以表示为

sum%lcm(0,1,2,...9}为多少。但是mod<=2520 && LCM<=2520这样

肯定存不下,于是要考虑如何处理LCM,毕竟很明显0~9的最大公倍数种类不会

超过48个。于是可以考虑一下离散化一下LCM,

if 2520 % num == 0 -> LCM[num]=temp++;

这样dp的三维就可以设为dp[20][2520][48];

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
const int mmax = 2520;
ll n , m , dp[20][mmax][50];
int temp , dig[20] , LCM[mmax + 10];
ll gcd(ll a , ll b) {
return b > 0 ? gcd(b , a % b) : a;
}
ll lcm(ll a , ll b) {
return a / gcd(a , b) * b;
}
void init() {
temp = 0;
for(int i = 1 ; i <= mmax ; i++) {
if(mmax % i == 0) {
LCM[i] = temp++;
}
else {
LCM[i] = 0;
}
}
}
ll dfs(int len , int count , int mod , int flag) {
if(!len) {
return mod % count == 0;
}
if(!flag && dp[len][mod][LCM[count]] != -1) {
return dp[len][mod][LCM[count]];
}
int t = flag ? dig[len] : 9;
ll sum = 0;
for(int i = 0 ; i <= t ; i++) {
int Nextmod = (mod * 10 + i) % mmax;
int Nextcount;
if(i == 0) {
Nextcount = count;
}
else {
Nextcount = (int)lcm(count , i);
}
sum += dfs(len - 1 , Nextcount , Nextmod , flag && i == t);
}
if(!flag)
dp[len][mod][LCM[count]] = sum;
return sum;
}
ll Gets(ll x) {
memset(dig , 0 , sizeof(dig));
int len = 0;
if(x == 0) {
dig[++len] = 0;
}
while(x) {
dig[++len] = x % 10;
x /= 10;
}
return dfs(len , 1 , 0 , 1);
}
int main() {
int t;
scanf("%d" , &t);
init();
memset(dp , -1 , sizeof(dp));
while(t--) {
scanf("%I64d%I64d" , &n , &m);
printf("%I64d\n" , Gets(m) - Gets(n - 1));
}
return 0;
}

CodeForces 55D Beautiful numbers(数位dp+数学)的更多相关文章

  1. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  3. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  4. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  5. codeforces 55D. Beautiful numbers 数位dp

    题目链接 一个数, 他的所有位上的数都可以被这个数整除, 求出范围内满足条件的数的个数. dp[i][j][k], i表示第i位, j表示前几位的lcm是几, k表示这个数mod2520, 2520是 ...

  6. FZU2179/Codeforces 55D beautiful number 数位DP

    题目大意: 求  1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...

  7. CF 55D. Beautiful numbers(数位DP)

    题目链接 这题,没想出来,根本没想到用最小公倍数来更新,一直想状态压缩,不过余数什么的根本存不下,看的von学长的blog,比着写了写,就是模版改改,不过状态转移构造不出,怎么着,都做不出来. #in ...

  8. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

  9. Codeforces 55D. Beautiful numbers(数位DP,离散化)

    Codeforces 55D. Beautiful numbers 题意 求[L,R]区间内有多少个数满足:该数能被其每一位数字都整除(如12,24,15等). 思路 一开始以为是数位DP的水题,觉得 ...

  10. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

随机推荐

  1. HTML第六章 盒子模型

    什么是盒子模型: (1)边框: (2)内边距: (3)外边距: (4)元素内容·: (5)背景色·: 边框: 属性: 颜色(border-color),粗细(border-width),样式(bord ...

  2. 【游记】NOIP2018初赛

    声明 本文最初的版本创建之时,本人甚至只是个电脑的小白,因而不太会用电脑编辑文字,最初的版本写在一个Word文档里,被随意的丢弃在我杂乱无比的网盘的某一个角落,直到我决定整理自己的成长历程,将散落的游 ...

  3. virtualbox安装ubuntu16 LTS及其配置

    一.下载安装VirtualBox 1. 从官网下载VirtualBox,目前版本:VirtualBox 6.0.6 for Windows hosts x86/amd64 2. 下载好之后安装Virt ...

  4. linux下安装开发环境

    jdk 下载jdk安装包,解压到/usr/java/jdk 配置环境变量: #vi /etc/profile 在该profile文件中最下面添加: JAVA_HOME=/usr/java/jdk1.7 ...

  5. 有关element 的一些问题(随时更新)

    <el-input></el-input> input  组件中官方自带的change时间是监听失去焦点之后的value变化,要想一只监听value的值变化的话需要使用  @i ...

  6. 关于int的范围以及溢出问题

    最近在练一些算法题目的时候恰巧碰到了几道关于int范围与溢出相关的问题,于是就整理一下. 1.原码.补码 在计算机中数值都是用补码表示和存储的(正数补码与原码一致,负数补码是原码符号位不变,其余位取反 ...

  7. vscode中配置git

    vscode中配置git vscode 报错 未找到Git.请安装Git,或在"git.path" 设置中配置 第一步安装git git安装方法自行解决,提供git下载连接! gi ...

  8. 记忆化搜索模板题---leetcode 1155. 掷骰子的N种方法

    1155. 掷骰子的N种方法 这里有 d 个一样的骰子,每个骰子上都有 f 个面,分别标号为 1, 2, ..., f. 我们约定:掷骰子的得到总点数为各骰子面朝上的数字的总和. 如果需要掷出的总点数 ...

  9. python3 how to creat alphabet

    Python: How To Generate a List Of Letters In The Alphabet  Method 1# First we need to figure out the ...

  10. Mybatis 中的<![CDATA[ ]]>浅析

    在使用mybatis 时我们sql是写在xml 映射文件中,如果写的sql中有一些特殊的字符的话,在解析xml文件的时候会被转义,但我们不希望他被转义,所以我们要使用<![CDATA[ ]]&g ...