Yellowstar is writing an article that contains N words and 1 picture, and the i-th word contains aiaicharacters. 
The page width is fixed to W characters. In order to make the article look more beautiful, Yellowstar has made some rules:

1. The fixed width of the picture is pw. The distance from the left side of the page to the left side of the photo fixed to dw, in other words, the left margin is dw, and the right margin is W - pw - dw. 
2. The photo and words can't overlap, but can exist in same line. 
3. The relative order of words cannot be changed. 
4. Individual words need to be placed in a line. 
5. If two words are placed in a continuous position on the same line, then there is a space between them. 
6. Minimize the number of rows occupied by the article according to the location and height of the image.

However, Yellowstar has not yet determined the location of the picture and the height of the picture, he would like to try Q different locations and different heights to get the best look. Yellowstar tries too many times, he wants to quickly know the number of rows each time, so he asked for your help. It should be noted that when a row contains characters or pictures, the line was considered to be occupied. 

InputThe first line of the input gives the number of test cases T; T test cases follow. 
Each case begins with one line with four integers N, W, pw, dw : the number of words, page width, picture width and left margin. 
The next line contains N integers aiai, indicates i-th word consists of aiai characters. 
The third line contains one integer Q. 
Then Q lines follow, each line contains the values of xi and hi, indicates the starting line and the image height of the image.

Limits 
T≤10T≤10 
1≤N,W,Q≤1051≤N,W,Q≤105 
1≤pw,ai≤W1≤pw,ai≤W 
0≤dw≤W−pw0≤dw≤W−pwOutputFor each query, output one integer denotes the minimum number of rows. 
Sample Input

2
2 7 4 3
1 3
3
1 2
2 2
5 2
3 8 2 3
1 1 3
1
1 1

Sample Output

2
3
3
1 题解:
  这个题目,的确,第一眼看上去是在倍增什么呢?可以倍增字节,但是复杂度还是不对,那么还有什么量可以倍增呢?就只剩下行数了,好久没有写倍增了,什么边界处理什么的都忘了,所以讲一下实现吧。
  dp[i][j]表示在没有图的情况下以第i个单词为开头,覆盖2^j次方单词包括i在内需要几个,这个初始状态就是对于每个单词,暴力匹配他还需要多少单词,付给dp[i][0],然后有一个显然的状态转移dp[i][j]=dp[i][j-1]+dp[i+dp[i][j-1]][j-1];
这里处理一下边界,如果dp[i][j-1]||dp[i+dp[i][j-1]][j-1]==0就不处理,保证之后单词数不够的情况下,dp[i][j]=0。
  然后再次设一个状态dp2[i][j]表示在有图的情况下以第i个单词为开头,覆盖2^j次方单词包括i在内需要几个,初始值和状态转移都是一样的。求的时候因为不可能超过20,就从20for到0,能跳就跳就可以了。
  具体就是没到图的开头时用dp1跳到图的开头,然后用dp2,跳过图中,最后如果还剩下单词就继续用dp跳,有细节,推荐看一下代码。 代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define MAXN 101000
using namespace std;
int dp[MAXN][],dp2[MAXN][];
int hi[MAXN],star[MAXN];
int a[MAXN];
int n,w,pw,dw,q; void init(){
scanf("%d%d%d%d",&n,&w,&pw,&dw);
memset(a,,sizeof(a));
for(int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&q);
memset(star,,sizeof(star));
memset(hi,,sizeof(hi));
for(int i=;i<=q;i++) scanf("%d%d",&star[i],&hi[i]);
} void pre(){
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++){
int sum=a[i],j=i+;
while(sum+a[j]+<=w&&j<=n) sum+=a[j++]+;
dp[i][]=j-i;
}
for(int j=;j<=;j++)
for(int i=;i<=n;i++){
if(!dp[i][j-]||!dp[i+dp[i][j-]][j-]) continue;
dp[i][j]=dp[i][j-]+dp[i+dp[i][j-]][j-];
}
memset(dp2,,sizeof(dp2));
for(int i=;i<=n;i++){
int j=i,flag=,sum=;
while(sum+a[j]+flag<=dw&&j<=n) sum+=a[j++]+flag,flag=;
int k=j;
sum=,flag=;
while(sum+a[k]+flag<=w-pw-dw&&k<=n) sum+=a[k++]+flag,flag=;
dp2[i][]=k-i;
}
for(int j=;j<=;j++)
for(int i=;i<=n;i++){
if(!dp2[i][j-]||!dp2[i+dp2[i][j-]][j-]) continue;
dp2[i][j]=dp2[i][j-]+dp2[i+dp2[i][j-]][j-];
}
} int jump1(int now){
int ans=;
for(int j=;j>=;j--){
if(!dp[now][j]) continue;
if(now+dp[now][j]-<=n){
now+=dp[now][j];
ans+=<<j;
}
}
return ans;
} int jump2(int now,int cen){
for(int j=;j>=;j--){
if(!dp[now][j]) continue;
if((<<j)<=cen){
cen-=(<<j);
now+=dp[now][j];
}
}
return now;
} int jump3(int now,int cen){
for(int j=;j>=;j--){
if(!dp2[now][j]) continue;
if((<<j)<=cen){
cen-=(<<j);
now+=dp2[now][j];
}
}
return now;
} void work(){
for(int i=;i<=q;i++){
int x=star[i],h=hi[i],tmp=jump1();
if(tmp<=x-){
printf("%d\n",tmp+h);
continue;
}
int ans=x+h-,now=jump2(,x-);
now=jump3(now,h);
if(now<=n) ans+=jump1(now);
printf("%d\n",ans);
}
} int main()
{
int t;cin>>t;
while(t--){
init();
pre();
work();
}
return ;
}

Typesetting HDU - 6107的更多相关文章

  1. HDU 6107 - Typesetting | 2017 Multi-University Training Contest 6

    比赛的时候一直念叨链表怎么加速,比完赛吃饭路上突然想到倍增- - /* HDU 6107 - Typesetting [ 尺取法, 倍增 ] | 2017 Multi-University Train ...

  2. HDU 6107 Typesetting (倍增)

    Typesetting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  3. HDU 6107 Typesetting

    Problem Description Yellowstar is writing an article that contains N words and 1 picture, and the i- ...

  4. HDOJ 2111. Saving HDU 贪心 结构体排序

    Saving HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  6. hdu 4859 海岸线 Bestcoder Round 1

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...

  7. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 4006The kth great number(K大数 +小顶堆)

    The kth great number Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64 ...

  9. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

随机推荐

  1. Linux中新建用户用不了sudo命令问题:rootr is not in the sudoers file.This incident will be reported解决

    参考:https://blog.csdn.net/lichangzai/article/details/39501025 如果执行sudo命令的用户没有执行sudo的权限,执行sudo命令时会报下面的 ...

  2. Invalid bound statement (not found): com.taotao.mapper.TbItemMapper.selectByExample问题解决

    最近在做一个关于ssm框架整合的项目,但是今天正合完后出现了问题: Invalid bound statement (not found): com.taotao.mapper.TbItemMappe ...

  3. JSP中的两种跳转方式分别是什么,有什么区别?

    forward跳转:<jsp:forward page ="跳转页面地址"> response跳转:response.sendRedirect("跳转页面地址 ...

  4. Android系统修改之Email自动回复功能分析

    1. Email添加自动回复功能需要注意事项 Email可能存在多个账户, 因此自动回复功能应该添加在账户设置里面, 自动回复针对一个账户单独处理 在Email账户设置里面, 开启自动回复功能的时, ...

  5. iOS -打包上传成功,在"构建版本"一直刷不出来

    今天提交版本到appstore,构建版本一直不出来,等了一天也没有出来,其实就是权限问题,iOS13 来了,所以面临的问题随之而来,苹果给邮箱发了这段话: Dear Developer,We iden ...

  6. eos bp节点 超级节点搭建

        搭建eos BP节点   环境搭建与配置 安装最新版本 $ wget https://github.com/eosio/eos/releases/download/v1.8.1/eosio-1 ...

  7. WeakMap 本身释放,而 keyObject 没有释放的情况下,value 会释放吗?

    const keyObject = ['keyObject']; new WeakMap().set(keyObject, ['value']); 问题:现在 ['value'] 会被释放吗? 听说W ...

  8. Metaspolit工具----基础

    Metasploit框架(Metasploit Framework,MSF)是一个开源工具,旨在方便渗透测试,他是有Ruby程序语言编写的模板化框架,具有很好的扩展性,便于渗透测试人员开发.使用定制的 ...

  9. Linux 笔记 - 第四章 Linux 文件和目录管理

    博客地址:http://www.moonxy.com 1. 绝对路径和相对路径 绝对路径:由根目录 "/" 写起的.如:/usr/local/mysql 相对路径:不是由根目录 & ...

  10. Angular4+Koa2+MongoDB开发个人博客

    **文章原创于公众号:程序猿周先森.本平台不定时更新,喜欢我的文章,欢迎关注我的微信公众号.** ![file](https://img2018.cnblogs.com/blog/830272/201 ...