题解:

网上的做法好像都是容斥

那就先说一下容斥

首先问题等价于求下面这个式子的方案数

$$\sum_{i=1}^{n} ai (0<ai<i) =k$$

直接$dp$复杂度是$nk$的,无法接受

我们考虑容斥

答案=所有-至少1个不满足+至少2个不满足-....

而不满足等价于$ai>=i$ 那么我们只需要令$b[i]=a[i]-i$就可以与其他等价了

实际上这样子看上去这个容斥并没有用处

因为要$dp$出容斥系数看上去至少是$O(n^2)$

现在我们需要算出,用i个不相同的数相加=k的方案数

我们注意一件事情,i的取值只有$\sqrt{k}$,所以如果状态设计得好,是可以的

要求数不同有一个经典套路就是 把操作转化成

1.给当前数组内全体数+1

2.给当前数组内全体数+1再在末尾放一个1

于是$f[i][j]$表示数组内有i个数,和为j的方案数 $$f[i][j]=f[i-1][j-i]+f[i][j-i]$$复杂度$n\sqrt{n}$

然后你写一下,肯定会发现出问题了(我没写这种做法但下面这种的时候遇到了同样的问题)

因为这么做可能有数>n了

怎么保证没有数>n呢,我们只需要令每个时刻的$f[i][j]$都是<=n的

那么出现大于n的只可能是n+1,$f[i][j]-=f[i-1][j-n-1]$就可以了

还是比较难想的。。

这题还有个做法是生成函数,在思维上就简单很多

$$f(x)=\frac{\prod_{i=1}^{n} (1-x^i)}{(1-x)^n}$$

然后要求这个东西,暴力是n^2logn的

然后乘法比较显然的是两边取ln,得到

$$ln(f(x))=\sum_{i=1}^{n} {ln(1-x^i)} - n*ln(1-x)$$

这样子我们发现要解决的就是$ln(1-x^i)$

这个东西就两项但我们要用$nlogn$的多项式求逆是不是太浪费了

于是打表找规律,可以发现(不过要是不知道结论考场谁有时间去打个多项式求ln找规律啊。。)

$ln(1-x)=\frac{1}{1}x+\frac{1}{2}x^2+\frac{1}{3}x^3+...$

$ln(1-x^2)=\frac{1}{1}x^2+\frac{1}{2}x^4+\frac{1}{3}x^6+...$

下面的规律同理

于是我们可以利用筛法在$nlogn$时间内求出

当然由于$$f(x)=\sum {d|x} {}{ \ \ \ g1(d)g2(\frac{x}{d}) }$$ 其中$g1(i)=\frac{1}{i},g2(i)=1$

因为$g1(i),g2(i)$是完全积性函数(只要是积性就可以了),所以他们的卷积也是积性函数

所以可以用线性筛做到$O(n)$ 我们类似于做约数和再维护一个h(i)表示不包括i的最小素因子的g1的和

于是就是多项式exp模板题了

#pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for(int i=h;i<=t;i++)
#define dep(i,t,h) for(int i=t;i>=h;i--)
#define ll long long
#define me(x) memset(x,0,sizeof(x))
#define mep(x,y) memcpy(x,y,sizeof(y))
#define mid (t<=0?(h+t-1)/2:(h+t)/2)
namespace IO{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T> void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; ll Z,C1=-;
template<class T>void wer(T x)
{
if (x<) sr[++C1]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C1]=z[Z],--Z);
}
IL void wer1()
{
sr[++C1]=' ';
}
IL void wer2()
{
sr[++C1]='\n';
}
template<class T>IL void maxa(T &x,T y) {if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) {if (x>y) x=y;}
template<class T>IL T MAX(T x,T y){return x>y?x:y;}
template<class T>IL T MIN(T x,T y){return x<y?x:y;}
};
using namespace IO;
const double ee=1.00000000000000;
const double pi=acos(-1.0);
const int N=4e5+;
const int mo=1e9+;
int r[N],n,m,l,inv[N],n1[N],n2[N];
struct cp{
double a,b;
IL cp operator +(const cp &o) const
{
return (cp){a+o.a,b+o.b};
}
IL cp operator -(const cp &o) const
{
return (cp){a-o.a,b-o.b};
}
IL cp operator *(register const cp &o) const
{
return (cp){a*o.a-b*o.b,o.a*b+o.b*a};
}
}a[N],b[N],c[N],d[N];
IL int fsp(int x,int y)
{
ll now=;
while (y)
{
if (y&) now=now*x%mo;
x=1ll*x*x%mo;
y>>=;
}
return now;
}
IL void clear()
{
for (int i=;i<=n;i++) a[i].a=a[i].b=b[i].a=b[i].b=c[i].a=c[i].b=d[i].a=d[i].b=;
}
cp *w[N],tmp[N*];
int p;
IL void init()
{
cp *now=tmp;
for (int i=;i<=p;i<<=)
{
w[i]=now;
for (int j=;j<i;j++) w[i][j]=(cp){cos(pi*j/i),sin(pi*j/i)};
now+=i;
}
}
IL void fft_init()
{
l=; for (n=;n<=m;n<<=) l++;
for (int i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
}
void fft(cp *a,int o)
{
for (int i=;i<n;i++) if (i>r[i]) swap(a[i],a[r[i]]);
for (int i=;i<n;i<<=)
for (int j=;j<n;j+=(i*))
{
cp *x1=a+j,*x2=a+i+j,*W=w[i];
for (int k=;k<i;k++,x1++,x2++,W++)
{
cp x=*x1,y=(cp){(*W).a,(*W).b*o}*(*x2);
*x1=x+y,*x2=x-y;
}
}
if (o==-) for(int i=;i<n;i++) a[i].a/=n;
}
IL void getcj(int *A,int *B,int len)
{
rep(i,,len)
{
A[i]=(A[i]+mo)%mo,B[i]=(B[i]+mo)%mo;
}
for (int i=;i<len;i++)
{
a[i]=(cp){A[i]&,A[i]>>};
b[i]=(cp){B[i]&,B[i]>>};
}
m=len*; fft_init();
fft(a,); fft(b,);
for (int i=;i<n;i++)
{
int j=(n-)&(n-i);
c[j]=(cp){0.5*(a[i].a+a[j].a),0.5*(a[i].b-a[j].b)}*b[i];
d[j]=(cp){0.5*(a[i].b+a[j].b),0.5*(a[j].a-a[i].a)}*b[i];
}
fft(c,); fft(d,);
double inv=ee/n;
rep(i,,n) c[i].a*=inv,c[i].b*=inv;
rep(i,,n) d[i].a*=inv,d[i].b*=inv;
rep(i,,len)
{
ll a1=c[i].a+0.5,a2=c[i].b+0.5;
ll a3=d[i].a+0.5,a4=d[i].b+0.5;
B[i]=(a1+((a2+a3)%mo<<)+((a4%mo)<<))%mo;
}
clear();
}
void getinv(int *A,int *B,int len)
{
if (len==) { B[]=fsp(A[],mo-); return;};
getinv(A,B,(len+)/);
int C[N]={};
rep(i,,len-) C[i]=A[i];
getcj(B,C,len);
getcj(B,C,len);
for (int i=;i<len;i++) B[i]=((2ll*B[i]-C[i])%mo+mo)%mo;
}
IL void getDao(int *a,int *b,int len)
{
for (int i=;i<len;i++) b[i-]=1ll*i*a[i]%mo;
b[len-]=;
}
IL void getjf(int *a,int *b,int len)
{
for (int i=;i<len;i++) b[i+]=1ll*a[i]*inv[i+]%mo;
b[]=;
}
IL void getln(int *A,int *B,int len)
{
int C[N]={},D[N]={};
getDao(A,C,len);
getinv(A,D,len);
getcj(C,D,len);
getjf(D,B,len);
}
IL void getexp(int *A,int *B,int len)
{
if (len==) {B[]=; return;}
getexp(A,B,(len+)>>);
int C[N]={};
getln(B,C,len);
for(int i=;i<len;i++) C[i]=(-C[i]+A[i])%mo;
C[]=(C[]+)%mo;
getcj(C,B,len);
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
inv[]=;
rep(i,,1e5+) inv[i]=(1ll*inv[mo%i]*(mo-(mo/i)))%mo;
int n,k;
read(n); read(k); k++;
n1[]=; n1[]=-;
p=k<<;
init();
getln(n1,n2,k);
rep(i,,k) n1[i]=-1ll*n*n2[i]%mo;
rep(i,,n)
{
for(int j=;j*i<=k;j++)
(n1[i*j]-=inv[j])%=mo;
}
me(n2);
getexp(n1,n2,k);
cout<<(n2[k-]+mo)%mo<<endl;
return ;
}

loj6077的更多相关文章

  1. 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP

    [LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...

  2. loj6077. 「2017 山东一轮集训 Day7」逆序对

    题目描述: loj 题解: 容斥+生成函数. 考虑加入的第$i$个元素对结果的贡献是$[0,i-1]$,我们可以列出生成函数. 长这样:$(1)*(1+x)*(1+x+x^2)*--*(1+x+x^2 ...

  3. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  4. 8月清北学堂培训 Day3

    今天是赵和旭老师的讲授~ 状态压缩 dp 状态压缩是设计 dp 状态的一种方式. 当普通的 dp 状态维数很多(或者说维数与输入数据有关),但每一维总量很少时,可以将多维状态压缩为一维来记录. 这种题 ...

  5. DP&图论 DAY 3 上午

    DP&图论  DAY 3  上午 状态压缩dp >状态压缩dp ◦状态压缩是设计dp状态的一种方式.◦当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总量很少是,可以将多维 ...

随机推荐

  1. Oracle篇 之 查询行及概念

    Oracle: s_emp   s_dept  s_region 行:Row(tuple) 列:Column(attribute) conn:改变用户 Drop:删除用户  drop user bri ...

  2. P2495 [SDOI2011]消耗战 lca倍增+虚树+树形dp

    题目:给出n个点的树  q次询问  问切断 k个点(不和1号点联通)的最小代价是多少 思路:树形dp  sum[i]表示切断i的子树中需要切断的点的最小代价是多少 mi[i]表示1--i中的最小边权 ...

  3. rt-thread 之网络组件

    @2019-02-23 [小记] 文件 <net_sockets.c> 为兼容标准 BSD Socket API 文件 <sal_socket.c> 为网络中间抽象层 文件 & ...

  4. 基于前后端分离的身份认证方式——JWT

    什么是JWT JWT--Json web token 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准,可实现无状态.分布式的Web应用授权. 现在一般都用redis来出来token做 ...

  5. 一个故事讲清楚BIO NIO 异步

    转载请引用:一个故事讲清楚NIO 假设某银行只有10个职员.该银行的业务流程分为以下4个步骤: 1) 顾客填申请表(5分钟): 2) 职员审核(1分钟): 3) 职员叫保安去金库取钱(3分钟): 4) ...

  6. 强化学习Q-Learning算法详解

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  7. 驱动调试(四)oops确定调用树

    目录 驱动调试(四)oops确定调用树 内核开启调用树 栈指针分析 原理 寄存器别名 基础解释 例子分析 找到PC地址的位置 栈分析 附录:原文的excel title: 驱动调试(四)oops确定调 ...

  8. 目前的.NET(C#)世界里,主流的ORM框架

    推荐一些常用的asp.net ORM框架 SqlSugar (国内) Dos.ORM (国内) Chloe (国内) StackExchange/Dapper (国外) Entity Framewor ...

  9. Groovy 设计模式 -- 适配器模式

    Adapter Pattern http://groovy-lang.org/design-patterns.html#_adapter_pattern 适配器模式,对象存在一个接口, 此接口在此对象 ...

  10. 《我是一只IT小小鸟读后感》

    在我步入大学前,并未了解何为IT,真是毫无知晓.由于种种原因最终还是选择了软件工程专业,是 对是错,是福是祸,不知该不该去考虑,但即已然 选择了这条路,便得付出一些努力,这个世界总 是有许多在默默努力 ...