Xgboost GPU 加速
import xgboost as xgb
import numpy as np
from sklearn.datasets import fetch_covtype
from sklearn.model_selection import train_test_split
import time
# Fetch dataset using sklearn
cov = fetch_covtype()
X = cov.data
y = cov.target
# Create 0.75/0.25 train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, train_size=0.75, random_state=42)
# Specify sufficient boosting iterations to reach a minimum
num_round = 25 #3000
# Leave most parameters as default
param = {'objective': 'multi:softmax', # Specify multiclass classification
'num_class': 8, # Number of possible output classes
'tree_method': 'gpu_hist' # Use GPU accelerated algorithm
}
# Convert input data from numpy to XGBoost format
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
gpu_res = {} # Store accuracy result
tmp = time.time()
# Train model
param['tree_method'] = 'gpu_hist'
xgb.train(param, dtrain, num_round, evals=[(dtest, 'test')], evals_result=gpu_res)
print("GPU Training Time: %s seconds" % (str(time.time() - tmp)))
[0] test-merror:0.254804
[1] test-merror:0.247885
[2] test-merror:0.24427
[3] test-merror:0.240677
[4] test-merror:0.238474
[5] test-merror:0.234763
[6] test-merror:0.232147
[7] test-merror:0.229716
[8] test-merror:0.227162
[9] test-merror:0.224622
[10] test-merror:0.222632
[11] test-merror:0.220773
[12] test-merror:0.218453
[13] test-merror:0.215582
[14] test-merror:0.214605
[15] test-merror:0.212223
[16] test-merror:0.211176
[17] test-merror:0.209868
[18] test-merror:0.208622
[19] test-merror:0.205917
[20] test-merror:0.20434
[21] test-merror:0.203727
[22] test-merror:0.202591
[23] test-merror:0.201621
[24] test-merror:0.199817
GPU Training Time: 4.505811929702759 seconds
# Repeat for CPU algorithm
tmp = time.time()
param['tree_method'] = 'hist'
cpu_res = {}
xgb.train(param, dtrain, num_round, evals=[(dtest, 'test')], evals_result=cpu_res)
print("CPU Training Time: %s seconds" % (str(time.time() - tmp)))
[0] test-merror:0.254831
[1] test-merror:0.247912
[2] test-merror:0.244298
[3] test-merror:0.24069
[4] test-merror:0.238536
[5] test-merror:0.234804
[6] test-merror:0.232229
[7] test-merror:0.229703
[8] test-merror:0.227162
[9] test-merror:0.224519
[10] test-merror:0.222784
[11] test-merror:0.220705
[12] test-merror:0.21844
[13] test-merror:0.21676
[14] test-merror:0.214736
[15] test-merror:0.212257
[16] test-merror:0.210206
[17] test-merror:0.209345
[18] test-merror:0.207617
[19] test-merror:0.206102
[20] test-merror:0.205194
[21] test-merror:0.202798
[22] test-merror:0.202309
[23] test-merror:0.200554
[24] test-merror:0.199328
CPU Training Time: 49.719186305999756 seconds
Xgboost GPU 加速的更多相关文章
- Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...
- mxnet:结合R与GPU加速深度学习
转载于统计之都,http://cos.name/tag/dmlc/,作者陈天奇 ------------------------------------------------------------ ...
- GPU—加速数据科学工作流程
GPU-加速数据科学工作流程 GPU-ACCELERATE YOUR DATA SCIENCE WORKFLOWS 传统上,数据科学工作流程是缓慢而繁琐的,依赖于cpu来加载.过滤和操作数据,训练和部 ...
- Theano在windows下的安装及GPU加速
安装环境:wondows 64bit Teano安装测试 1. Anaconda 安装 Anaconda是一个科学计算环境,自带的包管理器conda很强大.之所以选择它是因为它内置了python,以及 ...
- GPU 加速NLP任务(Theano+CUDA)
之前学习了CNN的相关知识,提到Yoon Kim(2014)的论文,利用CNN进行文本分类,虽然该CNN网络结构简单效果可观,但论文没有给出具体训练时间,这便值得进一步探讨. Yoon Kim代码:h ...
- 开启gpu加速的高性能移动端相框组件!
通过设置新的css3新属性translateX来代替传统的绝对定位改变left值的动画原理,新属性translateX会开启浏览器自带的gpu硬件加速动画性能,提高流畅度从而提高用户体验, 代码有很详 ...
- ubuntu 15 安装cuda,开启GPU加速
1 首先要开启GPU加速就要安装cuda.安装cuda,首先要安装英伟达的驱动.ubuntu有自带的开源驱动,首先要禁用nouveau.这儿要注意,虚拟机不能安装ubuntu驱动.VMWare下显卡只 ...
- Silverlight - GPU加速
1. 在Silverlight plug-in上设置 <param name="enableGPUAcceleration" value="true" / ...
- 用cudamat做矩阵运算的GPU加速
1. cudamat简介 cudamat是一个python语言下,利用NVIDIA的cuda sdk 进行矩阵运算加速的库.对于不熟悉cuda编程的程序员来说,这是一个非常方便的GPU加速方案.很多工 ...
随机推荐
- 数据库设计入门及ERMaster的安装和使用
数据库的设计步骤 1.标识表 (根据需求创建表) 2.标识表的字段 3.标识表与表之间的关系 注意事项: 三大范式: 1.确保标识的字段的原子性,字段的概念分的不能再分 2.确保字段与表有依赖的关系 ...
- 【Linux】-NO.160.Linux.1 -【升级Centos7】
Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...
- try catch的使用场景
- NABCD分析---校园服务
N(需求): 大学生活中,很多琐碎的小事浪费同学时间精力.我们的APP本着为同学服务的宗旨,解决生活中各方面的问题,同学们可以在APP上发布各种信息,例如兼职,二手买卖等等. A(做法): 用户打开A ...
- OI养老专题03:让坏人出列的约瑟夫问题
问题是这样的:一共有2n个人,其中有n个好人,n个坏人.好人的编号是1~n,坏人的编号是n+1~2n.要求你求出最小的m(报数到m的人出局),让前n个出局的人都是坏人. 似乎除了暴力,我们想不出其它的 ...
- python的库小全
环境管理 管理 Python 版本和环境的工具 p – 非常简单的交互式 python 版本管理工具. pyenv – 简单的 Python 版本管理工具. Vex – 可以在虚拟环境中执行命令. v ...
- dedecms二次开发
安装遇到的问题 修改文件如下 1.date目录下的config.cache.bak.php改成config.cache.php 2install目录下的index.html.install_lock. ...
- eclipse 没有web项目和server
New项目中没有web Window菜单的preference没有server 解决方法:打开help->Install new software… 在work with中找到http://do ...
- 贝叶斯公式由浅入深大讲解—AI基础算法入门
1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大.而且概率虽然未知,但最起码是一个确定 ...
- WC.exe【C】
gitee传送门!!!(电脑打不开github,多次尝试未果,决定先用gitee存着先) 项目要求 wc.exe 是一个常见的工具,它能统计文本文件的字符数.单词数和行数.这个项目要求写一个命令行程序 ...