ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

2019-03-19 16:13:18

Paperhttps://openreview.net/forum?id=HylVB3AqYm

Codehttps://github.com/MIT-HAN-LAB/ProxylessNAS

1. Background and Motivation: 

先来看看算法的名字:ProxylessNAS,将其拆分之后是这么个意思: Proxy(代理)Less(扣除)NAS(神经结构搜索),难么很自然的就可以读懂了:不用代理的神经网络搜索。那么问题来了,什么是代理呢?这就要提到本文的动机:NAS 可以自动设计有效的网络结构,但是由于前期所提出算法计算量太大,难以在大型任务上执行搜索。于是,出现了可微分的NAS,大大的降低了 GPU 的运算时间,但是也有一个需要较大 GPU memory 消耗的问题(grow linearly w.r.t. candidate set size)。所以,这些算法就只能在 proxy task 上,例如在较小的数据集上训练,或者仅用几个 blocks 进行学习,或者仅仅训练几个 epoch。这就可能引出如下的问题,算法在小数据上的搜索出来的模型,可能在 target task 上并不是最优的。所以,本文就提出 ProxylessNAS 来直接在 large-scale target tasks 或者 目标硬件平台上进行结构的学习。

本文作者将 NAS 看做是 path-level pruning process,特别的,我们直接训练一个 over-parameterized network,其包含所有的候选路径(如图 2 所示)。在训练过程中,我们显示的引入结构化参数来学习哪条路径是冗余的,这些冗余的分支在训练的最后,都被移除,以得到一个紧凑的优化结构。通过这种方式,在结构搜索过程中,我们仅仅需要训练一条网络,而不需要任何其他的 meta-controller (or hypernetwork)。

但是简单的将所有的候选路径都包含进来,又会引起 GPU 显存的爆炸,因为显存的消耗是和 选择的个数,呈现线性增长的关系。所以,GPU memory-wise,我们将结构参数进行二值化(1 或者 0),并且强制仅仅有一条路径,在运行时,可以被激活。这样就将显存需求将为了与训练一个紧凑的模型相当的级别。我们提出一种基于 BinaryConnect 的基于梯度的方法来训练二值化参数。此外,为了处理不可微分的硬件目标,如 latency,在特定的硬件上,来学习特定的网络结构。我们将 network latency 建模成连续的函数,并且将其作为正则化损失来进行优化。另外,我们也提出 REINFORCE-based algorithm 作为另外一种策略来处理硬件度量。

2. Method:

作者首先描述了 over-parameterized network 的构建,然后引入如何利用 binarized architecture parameters 来降低显存消耗。然后提出一种基于梯度的方法,来训练这些 binarized architecture parameters。最终,提出两种基础来处理不可微分的目标(e.g. latency),使其可以在特定的硬件上处理特定的神经网络。

2.1 Construction of Over-Parameterized Network:

==

论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware的更多相关文章

  1. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  2. 论文笔记:Progressive Neural Architecture Search

    Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...

  3. 论文笔记系列-Efficient Neural Architecture Search via Parameter Sharing

    Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的缺 ...

  4. 论文笔记:DARTS: Differentiable Architecture Search

    DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...

  5. 论文笔记系列-DARTS: Differentiable Architecture Search

    Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...

  6. 论文笔记:Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation

    Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation ...

  7. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  8. (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS

    Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in  ...

  9. 论文笔记系列-Neural Architecture Search With Reinforcement Learning

    摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...

随机推荐

  1. Redis做LRU缓存

    当Redis用作缓存时,通常可以让它在添加新数据时自动逐出旧数据. 这种行为在开发人员社区中非常有名,因为它是流行的memcached系统的默认行为. LRU实际上只是支持的驱逐方法之一. 本页介绍了 ...

  2. yum解决 "Couldn't resolve host 'apt.sw.be'" 错误

    1.yum无法安装工具    failure: repodata/repomd.xml from dag: [Errno 256] No more mirrors to try.http://apt. ...

  3. 小程序开发 easy-less 配置

    开发支付宝小程序, 不习惯直接写css 了,推动小程序的开发太低效,讲道理默认构建就应该支持less 和sass. vscode  有easy-less 插件,看下配置支持自定义扩展名. { &quo ...

  4. 775. Global and Local Inversions

    We have some permutation A of [0, 1, ..., N - 1], where N is the length of A. The number of (global) ...

  5. 【Bad Practice】12306 query

  6. MySQL SQL Explain输出学习

    MySQL的explain命令语句提供了如何执行SQL语句的信息,解析SQL语句的执行计划并展示,explain支持select.delete.insert.replace和update等语句,也支持 ...

  7. NetCore2.0下使用EF CodeFirst创建数据库

    本文所使用的VS版本:VS2017 15.3.0 首先新建一个.net core项目  取名NetCoreTask 使用模型视图控制器方式 新建Model层 在Model层下新建一个user实体类 1 ...

  8. 使用Shader制作loading旋转动画

    效果图: 1.绕Z轴旋转的旋转矩阵 2.UV旋转的步骤 (1) 由于旋转矩阵是绕原点旋转的,要把要旋转的UV坐标平移到原点 i.uv -= float2(0.5, 0.5); float2 tempU ...

  9. mysql数据库设计三范式

    为了建立冗余较小.结构合理的数据库,设计数据库时必须遵循一定的规则.在关系型数据库中这种规则就称为范式.范式是符合某一种设计要求的总结.要想设计一个结构合理的关系型数据库,必须满足一定的范式. 在实际 ...

  10. maven 控制台 打包

    maven打包方法1.打开cmd,进入到项目的根目录2.执行命令:mvn clean package等待结束.结束后到目录的target子目录中找jar文件即可