在tensorflow中使用batch normalization
问题
训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题,但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布
发生了改变了,那么我们就需要使用更小的learning rate去训练,这一现象被称为internal covariate shift
,Batch Normalization能够很好的解决这一问题。目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于:
- 可以选择一个较大的学习率,能够达到快速收敛的效果。
- 能够起到Regularizer的效果,在一些情况下可以不使用Dropout,因为BN提高了模型的泛化能力
介绍
我们在将数据输入到神经网络中往往需要对数据进行归一化,原因在于模型的目的就是为了学习模型的数据的分布,如果训练集的数据分布和测试集的不一样那么模型的泛化能力就会很差,另一方面如果模型的每一 batch的数据分布都不一样,那么模型就需要去学习不同的分布,这样模型的训练速度会大大降低。
BN是一个独立的步骤,被应用在激活函数之前,它简单地对输入进行零中心(zero-center)和归一化(normalize),然后使用两个新参数来缩放和移动结果(一个用于缩放,另一个用于缩放转移)。 换句话说,BN让模型学习最佳的尺度和 每层的输入的平均值。
为了零中心和归一化数据的分布,BN需要去估算输入的mean和standard deviation。
应用
tensorflow中有不同级别的封装层,我一般使用的tf.layers。这次用的是tf.layers.batch_normalization.
def myConv(x_in, nf, strides=1, is_training=True, name = 'conv3d'):
with tf.variable_scope(name):
# x_out = Conv3D(nf, kernel_size=3, padding='same',
# kernel_initializer='he_normal', strides=strides)(x_in)
x_out = tf.layers.conv3d(inputs=x_in,
filters=nf,
kernel_size=(3, 3, 3),
strides=strides,
padding='same',
kernel_initializer=tf.keras.initializers.he_normal(),
)
x_out = batch_norm(x_out,is_training)
x_out = LeakyRelU(x_out, 0.2)
return x_out
def batch_norm(x, is_train=True):
with tf.variable_scope("batch_norm"):
return tf.layers.batch_normalization(x,
epsilon=1e-5,
momentum=0.99,
training=is_train,
)
这是因为在计算BN中需要计算moving_mean
和moving_variance
并且更新,所以在执行run
的时候需要将其添加到执行列表中。需要下面这段代码这样才能计算μ和σ的滑动平均(测试时会用到),测试时traing设为False。
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(extra_update_ops):
self.g_A_trainer = optimizer.minimize(g_loss_A, var_list=g_A_vars)
在网上看到了很多这个问题的讨论,也有人自己写了一个BN层,最终还是去阅读了源码和官方教程这样写的。
在tensorflow中使用batch normalization的更多相关文章
- 使用TensorFlow中的Batch Normalization
问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题, ...
- tensorflow中使用Batch Normalization
在深度学习中为了提高训练速度,经常会使用一些正正则化方法,如L2.dropout,后来Sergey Ioffe 等人提出Batch Normalization方法,可以防止数据分布的变化,影响神经网络 ...
- Pytorch中的Batch Normalization操作
之前一直和小伙伴探讨batch normalization层的实现机理,作用在这里不谈,知乎上有一篇paper在讲这个,链接 这里只探究其具体运算过程,我们假设在网络中间经过某些卷积操作之后的输出的f ...
- PyTorch中的Batch Normalization
Pytorch中的BatchNorm的API主要有: 1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 ...
- 神经网络中使用Batch Normalization 解决梯度问题
BN本质上解决的是反向传播过程中的梯度问题. 详细点说,反向传播时经过该层的梯度是要乘以该层的参数的,即前向有: 那么反向传播时便有: 那么考虑从l层传到k层的情况,有: 上面这个 便是问题所在.因为 ...
- tensorflow中batch normalization的用法
网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下: 1.原理 公式如下: y=γ(x-μ)/σ+β 其中x是输入,y是输出,μ是均值,σ ...
- Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换
批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...
- tensorflow 的 Batch Normalization 实现(tf.nn.moments、tf.nn.batch_normalization)
tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, kee ...
- BN(Batch Normalization)
Batch Nornalization Question? 1.是什么? 2.有什么用? 3.怎么用? paper:<Batch Normalization: Accelerating Deep ...
随机推荐
- 2017-2018-2 20155228 《网络对抗技术》 实验一:PC平台逆向破解
2017-2018-2 20155228 <网络对抗技术> 实验一:PC平台逆向破解 实验内容 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用 ...
- [游戏开发日志]Windows下Cocos2d-x 3.14环境搭建
总介绍 我们小组使用的是cocos2d-x的游戏开发引擎,因此在所有开发工作之前,我们需要对这个引擎进行环境的搭建. 搭建过程 VS2013的下载和安装 VS只是作为一个开发环境而已,简单来说就是敲代 ...
- Hadoop 进程配置总结
HDFS: NameNode: core-site.xml <property> <name>fs.defaultFS</name> <value>hd ...
- 读取控制器PHP代码文件,并分析数据存到数据库,再重新读出生成PHP文件
<?php namespace app\publicSport\controller\verify; /** * 引入基类 */ use app\publicSport\controller ...
- hbase的一些要点
hbase特点及简介: hbase源自于谷歌的三大论文之一 GFS -- hdfs MapReduce - MR BigTable - hbase hbase在以Hadoop为基础的生态圈中的地位 h ...
- ceph添加osd(ceph-deploy)
修改主机名和 /etc/hosts 关闭防火墙和 SELINUX 安装和配置 NTP ceph-deploy 节点安装 安装 ceph-deploy sudo yum install ceph-dep ...
- 2.1JAVA基础复习——JAVA语言的基础组成注释和常量变量
JAVA语言的基础组成有: 1.关键字:被赋予特殊含义的单词. 2.标识符:用来标识的符号. 3.注释:用来注释说明程序的文字. 4.常量和变量:内存存储区域的表示. 5.运算符:程序中用来运算的符号 ...
- 集成学习:以Bagging、Adaboosting为例
集成学习是一大类模型融合策略和方法的统称,以下以bagging和boosting为例进行说明: 1.boosting boosting方法训练分类器采用串行的方式,每个弱分类器之间是相互依赖的,尤其后 ...
- Job for network.service failed because the control process exited with error code
转自:https://blog.csdn.net/dongfei2033/article/details/81124465 今天在centOS 7下更改完静态ip后发现network服务重启不了,翻遍 ...
- Derivative of Softmax Loss Function
Derivative of Softmax Loss Function A softmax classifier: \[ p_j = \frac{\exp{o_j}}{\sum_{k}\exp{o_k ...