原文链接www.cnblogs.com/zhouzhendong/p/UOJ129.html

题解

  考虑把大于等于 $\sqrt n$ 的质数和小于 $\sqrt  n$ 的分开考虑:

  1. 小于等于 $\sqrt n$ 的质数最多只有 8 个。

  2. 一个小于等于 n 的正整数最多包含 1 个 大于 $\sqrt n$ 的质因子,所以不同的这种质因子可以分离。

  考虑对双方掌控了哪些小于等于 $\sqrt n$ 的质数进行状压,然后按照除去小于等于 $\sqrt n$ 的因子后的值,将所有数分成若干类,考虑对同一类不同时出现在两个人手上的方案数进行 DP 即可。

  时间复杂度 $O(3 ^ 8 \cdot n )$ 。

代码

#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define real __zzd001
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=505;
int n,mod;
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int dp[2][1<<9][1<<9];
int p[8]={2,3,5,7,11,13,17,19};
int a[N],val[N],sit[N];
bool cmp(int a,int b){
return val[a]<val[b];
}
int main(){
n=read(),mod=read();
For(i,2,n){
a[i]=i;
val[i]=i,sit[i]=0;
For(j,0,7)
if (val[i]%p[j]==0){
sit[i]|=1<<j;
while (val[i]%p[j]==0)
val[i]/=p[j];
}
if (val[i]!=1)
sit[i]|=1<<8;
}
sort(a+2,a+n+1,cmp);
dp[0][0][0]=1;
For(id,2,n){
int v=a[id],s=sit[v];
int T0=id&1,T1=T0^1;
For(i,0,511){
int ii=i^511;
for (int j=ii;j>=0;j=(j-1)&ii){
dp[T1][i][j]=0;
if (!j)
break;
}
}
if (val[v]!=val[a[id-1]]){
For(i,0,511){
int ii=i^511;
for (int j=ii;j>=0;j=(j-1)&ii){
if (dp[T0][i][j]){
if (i>>8){
Add(dp[T0][i^1<<8][j],dp[T0][i][j]);
dp[T0][i][j]=0;
}
else if (j>>8){
Add(dp[T0][i][j^1<<8],dp[T0][i][j]);
dp[T0][i][j]=0;
}
}
if (!j)
break;
}
}
}
For(i,0,511){
int ii=i^511;
for (int j=ii;j>=0;j=(j-1)&ii){
if (dp[T0][i][j]){
Add(dp[T1][i][j],dp[T0][i][j]);
if (!(i&s))
Add(dp[T1][i][j|s],dp[T0][i][j]);
if (!(j&s))
Add(dp[T1][i|s][j],dp[T0][i][j]);
}
if (!j)
break;
}
}
}
int ans=0;
For(i,0,511)
For(j,0,511)
Add(ans,dp[(n&1)^1][i][j]);
cout<<ans<<endl;
return 0;
}

  

UOJ#129. 【NOI2015】寿司晚宴 动态规划的更多相关文章

  1. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  2. BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划

    BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...

  3. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  4. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

  5. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  6. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  7. BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...

  8. BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4197 https://www.luogu.org/problemnew/show/P2150 ht ...

  9. NOI2015 寿司晚宴

    今年NOI确实是在下输了.最近想把当时不会做的题都写一下. 题意 从2到n(500)这些数字中,选若干分给A,若干分给B,满足不存在:A的某个数和B的某个数的GCD不等于1. 对于寿司晚宴这题,标准解 ...

  10. bzoj 4199 [NOI2015]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

随机推荐

  1. JS学习笔记Day22

    一.Ajax的概念 (一)Ajax是一种在无需重新加载整个网页(刷新网页)的情况下能够更新部分网页的技术 (二)Ajax的全称是Asynchronous JavaScript and XML,即异步J ...

  2. 同样级别iOS程序员,为啥比我菜的程序员薪资都比我高?

    前言: 作为程序员,都有一种相同的焦虑——即当一次又一次的新技术浪潮袭来,总会不由自主的拼命跟随,总是担心如果不紧跟新技术的潮流,将会被时代所抛弃. 害怕年龄,害怕平庸,其实只是你在现实里的努力无法支 ...

  3. 20175209 实验二《Java面向对象程序设计》实验报告

    20175209 实验二<Java面向对象程序设计>实验报告 一.实验前期准备 了解三种代码 伪代码 产品代码 测试代码 我们先写伪代码,伪代码 从意图层面来解决问题: 有了伪代码 我们用 ...

  4. 011 Socket定义客户端

    引入命名空间: using System.Net; using System.Net.Sockets; using System.Threading;

  5. Tomcat系列(1)——Tomcat安装配置

    核心步骤 1. 安装JAVA(因为tomcat依赖于java) 配置:JAVA_HOME D:\Program Files (x86)\Java\jdk1.7.0 path  %JAVA_HOME%\ ...

  6. VMware 安装Linux系统 CentOS

    VMware 安装Linux系统 CentOS 1.  下载镜像系统 centos镜像下载地址:https://www.centos.org/download/ 选择DVD下载即可 linux各版本下 ...

  7. Angular记录(11)

    开始使用Angular写页面 使用WebStorm:版本2018.3.5 官网资料 资料大部分有中文翻译,很不错 速查表:https://www.angular.cn/guide/cheatsheet ...

  8. XGBboost 特征评分的计算原理

    xgboost是基于GBDT原理进行改进的算法,效率高,并且可以进行并行化运算,而且可以在训练的过程中给出各个特征的评分,从而表明每个特征对模型训练的重要性, 调用的源码就不准备详述,本文主要侧重的是 ...

  9. NPOI 读取excel的时候,时间格式的处理

    excel的时间格式是:CellType.Numeric 要判断时间还需要方法:DateUtil.IsCellDateFormatted(cell)的帮助: 示例代码如下: ICell cell = ...

  10. 机器学习基石8-Noise and Error

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...