目录

前言

sympy不仅在符号运算方面强大,在解方程方面也是很强大。

本章节学习对应官网的:Solvers

官方教程

https://docs.sympy.org/latest/tutorial/solvers.html

(一)求解多元一次方程-solve()

1.说明:

解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,

例如:\(2x=4\) 表示为:Eq(x*2, 4)

2.源代码:

"""
解下列二元一次方程
2x-y=3
3x+y=7
"""
# 导入模块
from sympy import * # 将变量符号化
x = Symbol('x')
y = Symbol('y')
z = Symbol('z') # 解一元一次方程
expr1 = x*2-4
r1 = solve(expr1, x)
r1_eq = solve(Eq(x*2, 4), x)
print("r1:", r1)
print("r1_eq:", r1_eq) # 解二元一次方程
expr2 = [2*x-y-3, 3*x+y-7]
r2 = solve(expr2, [x, y])
print("r1:", r2) # 解三元一次方程
f1 = x+y+z-2
f2 = 2*x-y+z+1
f3 = x+2*y+2*z-3
r3 = solve([f1, f2, f3], [x, y, z])
print("r3:", r3)

3.输出:

(二)解线性方程组-linsolve()

1.说明:

在sympy中,解线性方程组有三种形式:

  1. 默认等式为0的形式:linsolve(eq, [x, y, z])
  2. 矩阵形式:linsolve(eq, [x, y, z])
  3. 增广矩阵形式:linsolve(A,b, x, y, z)

2.源代码:

"""
x+y+z-2=0
2x-y+z+1=0
x+2y+2z-3=0
"""
from sympy import * x, y, z = symbols("x y z") # 默认等式为0的形式
print("======默认等式为0的形式 =======")
eq = [x+y+z-2, 2*x-y+z+1, x+2*y+2*z-3]
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result)) # 矩阵形式
print("======矩阵形式 =======")
eq = Matrix(([1, 1, 1, 2], [2, -1, 1, -1], [1, 2, 2, 3]))
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result)) # 增广矩阵形式
print("======增广矩阵形式 =======")
A = Matrix([[1, 1, 1], [2, -1, 1], [1, 2, 2]])
b = Matrix([[2], [-1], [3]])
system = A, b
result = linsolve(system, x, y, z)
print(result)
print(latex(result))

3.输出:

(三)解非线性方程组-nonlinsolve()

1.说明:

nonlinsolve()用于求解非线性方程组,例如二次方,三角函数,,,等方程

2.源代码:

"""
x**2+y**2-2=0
x**3+y**3=0
""" import sympy as sy
x, y = sy.symbols("x y") eq = [x**2+y**3-2, x**3+y**3]
result = sy.nonlinsolve(eq, [x, y])
print(result)
print(sy.latex(result))

3.输出:

\[\left\{\left ( -1, \quad 1\right ),\\ \left ( -1, \quad - \frac{1}{2} - \frac{\sqrt{3} i}{2}\right ),\\ \left ( -1, \quad - \frac{1}{2} + \frac{\sqrt{3} i}{2}\right ),\\ \left ( 1 - i, \quad -1 + i\right ),\\ \left ( 1 + i, \quad -1 - i\right ),\\ \left ( 1 - \frac{i \sqrt{- 6 \sqrt{3} + 12}}{2} - \frac{i \sqrt{- 2 \sqrt{3} + 4}}{2}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2} \sqrt{-2 + \sqrt{3}}}{2}\right ),\\ \left ( 1 - \frac{\sqrt{-12 - 6 \sqrt{3}}}{2} + \frac{\sqrt{-4 - 2 \sqrt{3}}}{2}, \quad - \frac{\sqrt{3}}{2} + \frac{1}{2} - \frac{\sqrt{-8 + \left(- \sqrt{3} + 1\right)^{2}}}{2}\right ),\\ \left ( 1 - \frac{\sqrt{-4 - 2 \sqrt{3}}}{2} + \frac{\sqrt{-12 - 6 \sqrt{3}}}{2}, \quad - \frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sqrt{-8 + \left(- \sqrt{3} + 1\right)^{2}}}{2}\right ),\\ \left ( 1 + \frac{\sqrt{-4 + 2 \sqrt{3}}}{2} + \frac{\sqrt{-12 + 6 \sqrt{3}}}{2}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2} - \frac{\sqrt{2} \sqrt{-2 + \sqrt{3}}}{2}\right )\right\}
\]

(四)求解微分方程-dsolve()

1.说明:

求解微分方程使用dsolve(),注意:

f = symbols('f', cls=Function)的作用是声明f()是一个函数。

2.源代码:

from sympy import *

# 初始化
x = symbols('x')
f = symbols('f', cls=Function) # 表达式
expr1 = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)) # 求解微分方程
r1 = dsolve(expr1, f(x)) print(r1)
print("原式:", latex(expr1))
print("求解后:", latex(r1))

3.输出:

原式:

\[f{\left (x \right )} - 2 \frac{d}{d x} f{\left (x \right )} + \frac{d^{2}}{d x^{2}} f{\left (x \right )} = \sin{\left (x \right )}
\]

解微分后:

\[f{\left (x \right )} = \left(C_{1} + C_{2} x\right) e^{x} + \frac{\cos{\left (x \right )}}{2}
\]

作者:Mark

日期:2019/03/17 周日

5.5Python数据处理篇之Sympy系列(五)---解方程的更多相关文章

  1. 4.5Python数据处理篇之Matplotlib系列(五)---plt.pie()饼状图

    目录 目录 前言 (一)简单的饼状图 (二)添加阴影和突出部分 (三)显示图例和数据标签: 目录 前言 饼状图需要导入的是: plt.pie(x, labels= ) (一)简单的饼状图 (1)说明: ...

  2. 3.5Python数据处理篇之Numpy系列(五)---numpy文件的存取

    目录 目录: (一)以文本形式存取 1.说明: 2.语法解释: 3.实例(以.csv文件为例) 4.效果展示 (二)以任意的形式存取 1.说明: 2.语法解释: 3.实例(以.bat二进制文件为例) ...

  3. 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作

    目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...

  4. 5.3Python数据处理篇之Sympy系列(三)---简化操作

    目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...

  5. 5.2Python数据处理篇之Sympy系列(二)---Sympy的基本操作

    目录 目录 前言 (一)符号的初始化与输出设置-symbol() symbols() latex() 1.作用: 2.操作: (二)替换符号-subs(old,new) 1.说明: 2.源代码: 3. ...

  6. 5.4Python数据处理篇之Sympy系列(四)---微积分

    目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...

  7. 5.1Python数据处理篇之Sympy系列(一)---Sympy的大体认识

    目录 目录 前言 目录 前言 sympy是python一个强大的数学符号运算第三方库,具体的功能请看下面操作 官网教程: https://docs.sympy.org/latest/tutorial/ ...

  8. 4.3Python数据处理篇之Matplotlib系列(三)---plt.plot()折线图

    目录 前言 (一)plt.plot()函数的本质 ==1.说明== ==2.源代码== ==3.展示效果== (二)plt.plot()函数缺省x时 ==1.说明== ==2.源代码== ==3.展示 ...

  9. 3.6Python数据处理篇之Numpy系列(六)---Numpy随机函数

    目录 目录 前言 (一)基础的随机函数 (二)轴的随机函数 (三)概率的随机函数 目录 前言 前一段日子学了numpy,觉得无趣,没有学完,不过后来看了看matplotlib,sympy等库时,频频用 ...

随机推荐

  1. Cassandra事务与关系型数据库事务有何区别

    Cassandra不会使用回滚和锁机制来实现关系型数据的ACID事务,相比较于提供原子性,隔离性和持久化,Cassandra提供最终(可调节的)一致性,让用户决定为每个事务提供强一致性或者最终一致性. ...

  2. AttributeError: module 'pip' has no attribute 'main'

    Pycharm在运行pip安装模块是报错如下: 解决方法: 找到安装路径下的packaging_tool.py文件修改如下: 我的路径为D:\Program Files\JetBrains\PyCha ...

  3. IIS 部署.netcore 500.19错误

    错误原因,没有安装 DotNetCore.2.0.5-WindowsHosting.exe 即托管程序,具体可以先检查IIS模块中有没有AspNetCoreModule,有则说明已安装,反正则无

  4. 『Asp.Net 组件』第一个 Asp.Net 服务器组件:自己的文本框控件

    代码: using System.Web; using System.Web.UI; using System.Web.UI.WebControls; namespace DemoWebControl ...

  5. 版本管理工具Git(三)Gitlab高可用

    高可用模式 企业版 社区版 我们这里说一下成本比较低的主备模式,它主要依赖的是DRBD方式进行数据同步,需要2台ALL IN ONE的GitLab服务器,也就是通过上面安装方式把所有组件都安装在一起的 ...

  6. npm用法

    查看包信息npm info mongodb 查看包的最新版本npm view mongodb version 安装npm install mongodb@2.2.33 已安装的包修改版本npm ins ...

  7. DAL分页

    using System;using System.Collections.Generic;using LModel.DTO;using Newtonsoft.Json;using System.Da ...

  8. Asp.net的DataGrid实现列冻结(C#)

    # Asp.net的DataGrid实现列冻结(C#) 一.写在前面 列冻结即在拖动横向滚动条时,冻结的列会随着滚动条移动,使得该列不会因为拖动滚动条而被隐藏,呈现出仿佛冻结的效果.列冻结与表头冻结是 ...

  9. Java学习笔记之——异常处理

    1.异常: 在程序运行时,发生了一些错误导致程序不能正常结束或者中断 2.异常导致的后果 Java程序的执行过程中如果出现异常事件,可以生成一个异常类对象,该异常对象封装了异常事件的信息,并将其被提交 ...

  10. ASP.NET SignalR介绍

    是什么? 简单来说,ASP.NET SignalR是一个开源的实时通讯(real-time)库,有了ASP.NET SignalR,我们可以在 详细介绍参考:https://docs.microsof ...