目录

前言

sympy不仅在符号运算方面强大,在解方程方面也是很强大。

本章节学习对应官网的:Solvers

官方教程

https://docs.sympy.org/latest/tutorial/solvers.html

(一)求解多元一次方程-solve()

1.说明:

解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,

例如:\(2x=4\) 表示为:Eq(x*2, 4)

2.源代码:

"""
解下列二元一次方程
2x-y=3
3x+y=7
"""
# 导入模块
from sympy import * # 将变量符号化
x = Symbol('x')
y = Symbol('y')
z = Symbol('z') # 解一元一次方程
expr1 = x*2-4
r1 = solve(expr1, x)
r1_eq = solve(Eq(x*2, 4), x)
print("r1:", r1)
print("r1_eq:", r1_eq) # 解二元一次方程
expr2 = [2*x-y-3, 3*x+y-7]
r2 = solve(expr2, [x, y])
print("r1:", r2) # 解三元一次方程
f1 = x+y+z-2
f2 = 2*x-y+z+1
f3 = x+2*y+2*z-3
r3 = solve([f1, f2, f3], [x, y, z])
print("r3:", r3)

3.输出:

(二)解线性方程组-linsolve()

1.说明:

在sympy中,解线性方程组有三种形式:

  1. 默认等式为0的形式:linsolve(eq, [x, y, z])
  2. 矩阵形式:linsolve(eq, [x, y, z])
  3. 增广矩阵形式:linsolve(A,b, x, y, z)

2.源代码:

"""
x+y+z-2=0
2x-y+z+1=0
x+2y+2z-3=0
"""
from sympy import * x, y, z = symbols("x y z") # 默认等式为0的形式
print("======默认等式为0的形式 =======")
eq = [x+y+z-2, 2*x-y+z+1, x+2*y+2*z-3]
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result)) # 矩阵形式
print("======矩阵形式 =======")
eq = Matrix(([1, 1, 1, 2], [2, -1, 1, -1], [1, 2, 2, 3]))
result = linsolve(eq, [x, y, z])
print(result)
print(latex(result)) # 增广矩阵形式
print("======增广矩阵形式 =======")
A = Matrix([[1, 1, 1], [2, -1, 1], [1, 2, 2]])
b = Matrix([[2], [-1], [3]])
system = A, b
result = linsolve(system, x, y, z)
print(result)
print(latex(result))

3.输出:

(三)解非线性方程组-nonlinsolve()

1.说明:

nonlinsolve()用于求解非线性方程组,例如二次方,三角函数,,,等方程

2.源代码:

"""
x**2+y**2-2=0
x**3+y**3=0
""" import sympy as sy
x, y = sy.symbols("x y") eq = [x**2+y**3-2, x**3+y**3]
result = sy.nonlinsolve(eq, [x, y])
print(result)
print(sy.latex(result))

3.输出:

\[\left\{\left ( -1, \quad 1\right ),\\ \left ( -1, \quad - \frac{1}{2} - \frac{\sqrt{3} i}{2}\right ),\\ \left ( -1, \quad - \frac{1}{2} + \frac{\sqrt{3} i}{2}\right ),\\ \left ( 1 - i, \quad -1 + i\right ),\\ \left ( 1 + i, \quad -1 - i\right ),\\ \left ( 1 - \frac{i \sqrt{- 6 \sqrt{3} + 12}}{2} - \frac{i \sqrt{- 2 \sqrt{3} + 4}}{2}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2} \sqrt{-2 + \sqrt{3}}}{2}\right ),\\ \left ( 1 - \frac{\sqrt{-12 - 6 \sqrt{3}}}{2} + \frac{\sqrt{-4 - 2 \sqrt{3}}}{2}, \quad - \frac{\sqrt{3}}{2} + \frac{1}{2} - \frac{\sqrt{-8 + \left(- \sqrt{3} + 1\right)^{2}}}{2}\right ),\\ \left ( 1 - \frac{\sqrt{-4 - 2 \sqrt{3}}}{2} + \frac{\sqrt{-12 - 6 \sqrt{3}}}{2}, \quad - \frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sqrt{-8 + \left(- \sqrt{3} + 1\right)^{2}}}{2}\right ),\\ \left ( 1 + \frac{\sqrt{-4 + 2 \sqrt{3}}}{2} + \frac{\sqrt{-12 + 6 \sqrt{3}}}{2}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2} - \frac{\sqrt{2} \sqrt{-2 + \sqrt{3}}}{2}\right )\right\}
\]

(四)求解微分方程-dsolve()

1.说明:

求解微分方程使用dsolve(),注意:

f = symbols('f', cls=Function)的作用是声明f()是一个函数。

2.源代码:

from sympy import *

# 初始化
x = symbols('x')
f = symbols('f', cls=Function) # 表达式
expr1 = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)) # 求解微分方程
r1 = dsolve(expr1, f(x)) print(r1)
print("原式:", latex(expr1))
print("求解后:", latex(r1))

3.输出:

原式:

\[f{\left (x \right )} - 2 \frac{d}{d x} f{\left (x \right )} + \frac{d^{2}}{d x^{2}} f{\left (x \right )} = \sin{\left (x \right )}
\]

解微分后:

\[f{\left (x \right )} = \left(C_{1} + C_{2} x\right) e^{x} + \frac{\cos{\left (x \right )}}{2}
\]

作者:Mark

日期:2019/03/17 周日

5.5Python数据处理篇之Sympy系列(五)---解方程的更多相关文章

  1. 4.5Python数据处理篇之Matplotlib系列(五)---plt.pie()饼状图

    目录 目录 前言 (一)简单的饼状图 (二)添加阴影和突出部分 (三)显示图例和数据标签: 目录 前言 饼状图需要导入的是: plt.pie(x, labels= ) (一)简单的饼状图 (1)说明: ...

  2. 3.5Python数据处理篇之Numpy系列(五)---numpy文件的存取

    目录 目录: (一)以文本形式存取 1.说明: 2.语法解释: 3.实例(以.csv文件为例) 4.效果展示 (二)以任意的形式存取 1.说明: 2.语法解释: 3.实例(以.bat二进制文件为例) ...

  3. 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作

    目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...

  4. 5.3Python数据处理篇之Sympy系列(三)---简化操作

    目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...

  5. 5.2Python数据处理篇之Sympy系列(二)---Sympy的基本操作

    目录 目录 前言 (一)符号的初始化与输出设置-symbol() symbols() latex() 1.作用: 2.操作: (二)替换符号-subs(old,new) 1.说明: 2.源代码: 3. ...

  6. 5.4Python数据处理篇之Sympy系列(四)---微积分

    目录 目录 前言 (一)求导数-diff() 1.一阶求导-diff() 2.多阶求导-diff() 3.求偏导数-diff() (二)求积分-integrate() (三)求极限-limit() ( ...

  7. 5.1Python数据处理篇之Sympy系列(一)---Sympy的大体认识

    目录 目录 前言 目录 前言 sympy是python一个强大的数学符号运算第三方库,具体的功能请看下面操作 官网教程: https://docs.sympy.org/latest/tutorial/ ...

  8. 4.3Python数据处理篇之Matplotlib系列(三)---plt.plot()折线图

    目录 前言 (一)plt.plot()函数的本质 ==1.说明== ==2.源代码== ==3.展示效果== (二)plt.plot()函数缺省x时 ==1.说明== ==2.源代码== ==3.展示 ...

  9. 3.6Python数据处理篇之Numpy系列(六)---Numpy随机函数

    目录 目录 前言 (一)基础的随机函数 (二)轴的随机函数 (三)概率的随机函数 目录 前言 前一段日子学了numpy,觉得无趣,没有学完,不过后来看了看matplotlib,sympy等库时,频频用 ...

随机推荐

  1. 死磕 java集合之TreeMap源码分析(一)- 内含红黑树分析全过程

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 TreeMap使用红黑树存储元素,可以保证元素按key值的大小进行遍历. 继承体系 Tr ...

  2. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  3. Chapter 5 Blood Type——16

    "Okay, guys, I want you all to take one piece from each box," he said as he produced a pai ...

  4. 环境与工具2:建立高效的mac环境

    你的工作与生活离不开电脑,电脑是一个工具,也是一个环境.环境是不是绿水青山,是不是得心应手,这是很重要的事情.小程平时使用macbook来学习跟娱乐,最近重装了系统,很多环境与工具都需要重新组建. 那 ...

  5. 打造自己的.NET Core项目模板

    前言 每个人都有自己习惯的项目结构,有人的喜欢在项目里面建解决方案文件夹:有的人喜欢传统的三层命名:有的人喜欢单一,简单的项目一个csproj就搞定.. 反正就是萝卜青菜,各有所爱. 可能不同的公司对 ...

  6. 为容器化的 Go 程序搭建 CI

    本文介绍如何使用 Jenkins 的声明式 pipeline 为一个简单的 Golang web 应用搭建 CI 环境.如果你还不太了解 Jenkins 及其声明式 pipeline,请先参考笔者的 ...

  7. 装饰器模式 Decorator 结构型 设计模式 (十)

    引子           现实世界的装饰器模式 大家应该都吃过手抓饼,本文装饰器模式以手抓饼为模型展开简介 "老板,来一个手抓饼,  加个培根,  加个鸡蛋,多少钱?" 这句话会不 ...

  8. 如何正确使用Java泛型

    前言 Java 1.5之前是没有泛型的,以前从集合中读取每个对象都必须先进行转换,如果不小心存入集合中对象类型是错的,运行过程中转换处理会报错.有了泛型之后编译器会自动帮助转换,使程序更加安全,但是要 ...

  9. Python并发编程之消息队列补充及如何创建线程池(六)

    大家好,并发编程 进入第六篇. 在第四章,讲消息通信时,我们学到了Queue消息队列的一些基本使用.昨天我在准备如何创建线程池这一章节的时候,发现对Queue消息队列的讲解有一些遗漏的知识点,而这些知 ...

  10. arcgis 10.0中的server报错说工作站服务没有打开

    大家好! 写这篇文章其实我也不知道该不该写,感觉问题其实也不是自己解决的,但是这个问题困恼了我2天,我还将arcgis10.0重装了一次. 下面也不多说了,主要是由于公司的需求,将自己的arcgis1 ...