CF1012B Chemical table
给你一个 \(n\times m\) 的矩形,一开始有 \(q\) 个格子上被标记。对于任意两行两列,如果交汇的四个格子中有三个被标记,那么第 \(4\) 个会被自动标记。问你至少需要手动标记几个格子,使得整个矩形内的格子都被标记。
\(n,\ m,\ q\leq2\times10^5\)
并查集,构造
把元素 \((x,\ y)\) 看做二分图的一条边 \((x,\ n+y)\)
目标是将它变成完全二分图
而标记其他点的条件 \((x_1,\ y_1),\ (x_1,\ y_2),\ (x_2,\ y_1)\to(x_2,\ y_2)\) 并不改变二分图中连通分量个数
所以对于二分图的某一个连通分量必定可以通过如上条件变成一个完全二分子图
所以答案即为联通所有连通分量的边数,即为 \(\verb|连通分量个数|-1\)
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 4e5 + 10;
int n, m, q, ans, par[maxn];
int find(int x) {
return par[x] == x ? x : par[x] = find(par[x]);
}
void unite(int x, int y) {
if ((x = find(x)) != (y = find(y))) {
par[x] = y, ans++;
}
}
int main() {
scanf("%d %d %d", &n, &m, &q);
for (int i = 1; i <= n + m; i++) {
par[i] = i;
}
while (q--) {
int x, y;
scanf("%d %d", &x, &y);
unite(x, n + y);
}
printf("%d", n + m - ans - 1);
return 0;
}
\(orz\ \color{black}{P}\color{red}{inkrabbit}\)
CF1012B Chemical table的更多相关文章
- CF1012B Chemical table 题解【二分图】【构造】
有意思的网格图转化.CF Div.1 还是挺有难度的. 注:由于本题有较完美的中文题面,所以不贴英文题面. 英文题面 题目描述 Innopolis 大学的教授正努力研究元素周期表.他们知道,有 \(n ...
- CF1012B Chemical table(构造)
[Luogu-CF1012B] 还有重题 P5089[eJOI2018]元素周期表 题解原话 : 可以发现这个过程是不改变二分图中的连通分量的个数的 答案就是 连通分量数-1 证明 : 设一行或一列为 ...
- CF1012B Chemical table 构造_思维_并查集
我们可以将横坐标和纵坐标看成是点.发现这些点之间是有传递性的. 题中说明,如果有矩阵中三个顶点被选,则底角的点也会被覆盖,发现这些点之间是有传递性的.那么我们最终达到的目的就是使整个图中只有 111 ...
- Chemical table CFR500 div2D(并查集)
给定的一个n*m的区域内,给出一些点的坐标,这些点上有一个元素,如果在矩形的子矩形的三个点都有元素,那么第四个点的元素可以自己产生,其他的元素需要购买,问最少需要购买多少中元素才可以把这个区域给填满. ...
- Chemical table CodeForces - 1012B
题意: 一个棋盘 对于任何一个棋盘中的矩形 如果 任意三角存在棋子 则第四个角会自动生成一个棋子 求铺满整个棋盘 我们至少要向棋盘里加多少枚棋子 解析: 这题就是求图中有多少个连通图,可以直接dfs ...
- 洛谷 P5089: CodeForces #500 (Div. 1) B / 1012B : Chemical table
题目传送门:洛谷P5089. 题意简述: 一张 \(n \times m\) 的表格,有一些格子有标记,另外一些格子没有标记. 如果 \((r_1,c_1),(r_1,c_2),(r_2,c_1)\) ...
- Codeforces Round #500 (Div. 2) D - Chemical table
首先我们如果满足三缺一,那么必有同行和同列的点 如果两行有同列的数,我们可以设想,他们最后会全部填充成为两者啥都有的情况 显然这个是个并查集 现在我们有了很多集合,每个集合自己可以进行三缺一操作,但是 ...
- Codeforces 1012B Chemical table (思维+二分图)
<题目链接> 题目大意:给定一个n*m的矩阵网格,向其中加点,对于一个组成矩形的四个点中如果有三个点中有元素,那么第四个点中会自动产生新的元素.问你最少再加多少个点能够填满这个网格.解题分 ...
- CF1013D Chemical table
题目链接:http://codeforces.com/contest/1013/problem/D 题目大意: 给出一个 \(n \times m\) 的表格,表格上有一些初始点.若有这样的三个点:\ ...
随机推荐
- Android总结篇系列:Activity中几个主要函数详解
Activity作为Android系统中四大基本组件之一,包含大量的与其他的各大组件.intent.widget以及系统各项服务等之间的交互的函数.在此,本文主要选取实际项目开发中常用的,但完全理解又 ...
- 理解 docker 容器中的 uid 和 gid
默认情况下,容器中的进程以 root 用户权限运行,并且这个 root 用户和宿主机中的 root 是同一个用户.听起来是不是很可怕,因为这就意味着一旦容器中的进程有了适当的机会,它就可以控制宿主机上 ...
- Flask入门之完整项目搭建
一.创建虚拟环境 1,新建虚拟环境 cmd中输入:mkvirtualenv 环境名 2,在虚拟环境安装项目运行所需要的基本模块 pip install flask==0.12.4 pip instal ...
- Linux常用命令详解(week1_day1_1)--技术流ken
本节内容 基础命令:lsmanpwdcdmkdirechotouchcpmvrmrmdircatmorelessheadtailclearpoweroffreboot进阶命令(下一章节):aliasu ...
- [C# 设计模式] Iterator - 迭代器模式:我与一份奥利奥早餐的故事
Iterator - 迭代器模式 目录 前言 回顾 UML 类图 代码分析 抽象的 UML 类图 思考 前言 这是一包奥利奥(数组),里面藏了很多块奥利奥饼干(数组中的元素),我将它们放在一个碟子上慢 ...
- 使用asp.net mvc + entityframework + sqlServer 搭建一个简单的code first项目
步骤: 1. 创建一个asp.net mvc 项目 1.1 项目创建好结构如下 2 通过vs安装EntityFramework框架 install-package entityframework 3. ...
- C# /VB.NET操作Word批注(一)—— 插入、修改、删除Word批注
批注内容可以是对某段文字或内容的注释,也可以是对文段中心思想的概括提要,或者是对文章内容的评判.疑问,以及在阅读时给自己或他人起到提示作用.本篇文章中将介绍如何在C#中操作Word批注,主要包含以下要 ...
- Java开发笔记(四十)日期与字符串的互相转换
前面介绍了如何通过Date工具获取各个时间数值,但是用户更喜欢形如“2018-11-24 23:04:18”这种结构清晰.简洁明了的字符串,而非啰里八唆依次汇报每个时间单位及其数值的描述.既然日期时间 ...
- Redis面试点
redis的数据结构有那些 字符串 String 字典:Hash 列表:List 集合:set 有序集合:sortedSet 如果大量的key设置在同一时间过期,一般需要注意什么 大量的key过期 ...
- 【学习笔记】tensorflow实现一个简单的线性回归
目录 准备知识 Tensorflow运算API 梯度下降API 简单的线性回归的实现 建立事件文件 变量作用域 增加变量显示 模型的保存与加载 自定义命令行参数 准备知识 Tensorflow运算AP ...