[物理学与PDEs]第1章第8节 静电场和静磁场 8.3 静磁场
1. 静磁场: 由稳定电流形成的磁场.
2. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\bf 0},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&={\bf j}_f. \eea \eeex$$ 电荷守恒律方程: $$\bex \Div{\bf j}_f=0. \eex$$
3. 矢势法处理静磁场
(1) $$\bex \Div{\bf B}=0\ra \exists\ {\bf A},\st \Div{\bf A}=0,\ \rot{\bf A}={\bf B}. \eex$$ 称 ${\bf A}$ 为静磁场的矢势.
(2) $$\beex \bea {\bf j}_f&=\rot{\bf H}=\rot\sex{\cfrac{1}{\mu}\rot{\bf A}}\\ &=\n\cfrac{1}{\mu}\times\rot{\bf A}+\cfrac{1}{\mu}\rot\rot{\bf A}\\ &=\n\cfrac{1}{\mu}\times\rot{\bf A}-\cfrac{1}{\mu}\lap{\bf A}. \eea\eeex$$ 故 ${\bf A}$ 满足主部分离的二阶椭圆型方程组.
(3) 当 $\mu$ 为常数时, $$\bex -\lap{\bf A}=\mu{\bf j}_f\ra {\bf A}=\cfrac{\mu}{4\pi}\int_\Omega \cfrac{{\bf j}_f(P')\rd V_{P'}}{r_{P'P}}. \eex$$ 电磁场能量密度 $$\beex \bea \cfrac{1}{2}{\bf B}\cdot{\bf H} &=\cfrac{1}{2}\rot{\bf A}\cdot {\bf H}\\ &=\cfrac{1}{2}\Div({\bf A}\cdot{\bf H})+\cfrac{1}{2}{\bf A}\cdot\rot{\bf H}\\ &=\cfrac{1}{2}\Div({\bf A}\cdot{\bf H})+\cfrac{1}{2}{\bf A}\cdot {\bf j}_f; \eea \eeex$$ 电磁场能量 $$\bex U_{e,m}=\cfrac{1}{2}\int_\Omega {\bf A}\cdot{\bf j}_f\rd V. \eex$$
4. 标势法处理静磁场
(1) $$\beex \bea \Div{\bf j}_f=0&\ra \exists\ {\bf F},\st \Div{\bf F}=0,\ \rot{\bf F}={\bf j}_f\\ &\ra \rot ({\bf H}-{\bf F})={\bf 0}\\ &\ra \exists\ \phi,\st {\bf H}-{\bf F}=-\n\phi. \eea \eeex$$ 称 $\phi$ 为静磁场的标势. 而有 $$\beex \bea {\bf B}&=\mu {\bf H}=\mu({\bf F}-\n \phi),\\ -\Div(\mu \n\phi)&=-\Div(\mu {\bf F})=-\n \mu\cdot {\bf F}\\ &=0\quad\sex{\mu\mbox{ 为常数时}}. \eea \eeex$$
(2) 交界面条件 $$\beex \bea &\quad 0=[{\bf H}]\times{\bf n}=[{\bf F}-\n\phi]\times {\bf n}\\ &\ra [\phi]=0\quad\sex{[{\bf B}]\cdot{\bf n}=0\ra F\mbox{ 连续}};\\ &\quad 0=[{\bf B}]\cdot{\bf n}=[\mu {\bf F}-\mu \n\phi]\cdot{\bf n}\\ &\ra \sez{\mu\cfrac{\p \phi}{\p n}}=[\mu] {\bf F}\cdot {\bf n}. \eea \eeex$$
(3) 电磁能量密度 $$\beex \bea \cfrac{1}{2}{\bf B}\cdot{\bf H} &=\cfrac{1}{2}\mu\sex{{\bf F}-\n\phi}\cdot \sex{{\bf F}-\n\phi}\\ &=\cfrac{1}{2}\mu |{\bf F}|^2-\mu {\bf F}\cdot\n\phi+\cfrac{1}{2}\mu |\n\phi|^2\\ &=\cfrac{1}{2}\mu\sex{|{\bf F}|^2+|\n\phi|^2} -\Div(\mu{\bf F}\phi)+\phi\Div(\mu {\bf F})\\ &=\cfrac{1}{2}\mu\sex{|{\bf F}|^2+|\n\phi|^2} -\Div(\mu{\bf F}\phi)+\phi {\bf F}\cdot\n\nu; \eea \eeex$$ 电磁场能量 $$\beex \bea U_{e,m}&=\cfrac{1}{2}\int_\Omega {\bf B}\cdot{\bf H}\rd V\\ &=\cfrac{1}{2}\int_\Omega \mu|{\bf F}|^2+2\phi {\bf F}\cdot\n\mu+\mu|\n\phi|^2\rd V. \eea \eeex$$
5. 静电场与静磁场的比较 $$\bex \ba{rl} \mbox{静电场 }{\bf E}&\quad\quad\mbox{静磁场 }{\bf B}\\ ----------&\quad\quad----------\\ \mbox{无旋场 (纵场)}&\quad\quad\mbox{无源场 (横场)}\\ {\bf E}=-\n \phi&\quad\quad{\bf B}=\rot{\bf A}\quad(\Div{\bf A}=0)\\ -\Div(\ve \n\phi)=\rho_f &\quad\quad\rot\sex{\cfrac{1}{\mu}\rot{\bf A}}={\bf j}_f\\ -\lap\phi= \cfrac{1}{\ve}\rho_f\ \sex{\ve\mbox{ 为常数时 }}&\quad\quad-\lap{\bf A}=\mu{\bf j}_f\ \sex{\mu\mbox{ 为常数时}}\\ \mbox{能量 }U=\cfrac{1}{2}\int_\Omega \rho_f\phi\rd V&\quad\quad\mbox{能量 }U=\cfrac{1}{2}\int_\Omega {\bf j}_f\cdot{\bf A}\rd V\\ ----------&\quad\quad---------- \ea \eex$$
[物理学与PDEs]第1章第8节 静电场和静磁场 8.3 静磁场的更多相关文章
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.2 稳定电流的电场
1. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\bf 0},\\ \Div{\bf B} ...
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场
1. 静电场: 由静止电荷产生的稳定电场. 2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$ ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
随机推荐
- RESTful API规范
1. 域名 应该尽量将API部署在专用的域名下. https://api.example.com 如果确定API简单,不会有进一步的括在,可以考虑放在主域名之下. https://example.or ...
- CodeChef Dynamic GCD
嘟嘟嘟vjudge 我今天解决了一个历史遗留问题! 题意:给一棵树,写一个东西,支持一下两种操作: 1.\(x\)到\(y\)的路径上的每一个点的权值加\(d\). 2.求\(x\)到\(y\)路径上 ...
- PHP奇淫技巧
https://www.jb51.net/list/list_67_1.htm PHP技巧:https://www.jb51.net/list/list_67_13.htm mysql三范式 1NF: ...
- docker 安装 fastdfs
fastdfs 安装 //1.拉取镜像 docker pull morunchang/fastdfs //2.启动tracker docker run -d --name tracker --net= ...
- robot中简单的使用键盘按键,和对象无关
参考链接: https://blog.csdn.net/smallsmallmouse/article/details/78689675 1.在python中的代码 from selenium imp ...
- 如何展开Linux Memory Management学习?
Linux的进程和内存是两座大山,没有翻过这两座大山对于内核的理解始终是不完整的. 关于Linux内存管理,在开始之前做些准备工作. 首先bing到了Quora的<How can one rea ...
- 类别不平衡问题和Softmax回归
目录 类别不平衡(class-imbalance) Softmax回归模型 类别不平衡(class-imbalance) 当不同类别的训练样本数目差别很大,则会对学习过程造成困扰.如有998个反例,但 ...
- SpringMVC整合freeMarker实现页面静态化+SpringMVC配置多视图
一.背景 1.什么是FreeMarker FreeMarker是一个模板引擎,一个基于模板生成文本输出的通用工具,使用纯Java编写 FreeMarker被设计用来生成HTML Web页面,特别是基于 ...
- CodeForces 1151B Dima and a Bad XOR
题目链接:http://codeforces.com/contest/1151/problem/B 题目大意: 给定一个n*m的矩阵,里面存放的是自然数,要求在每一行中选一个数,把他们异或起来后结果大 ...
- SaxReader读取xml
package com.java1234.action; import java.io.File; import java.util.List; import org.dom4j.Document; ...