1. 静磁场: 由稳定电流形成的磁场.

2. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\bf 0},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&={\bf j}_f. \eea \eeex$$ 电荷守恒律方程: $$\bex \Div{\bf j}_f=0. \eex$$

3. 矢势法处理静磁场

(1) $$\bex \Div{\bf B}=0\ra \exists\ {\bf A},\st \Div{\bf A}=0,\ \rot{\bf A}={\bf B}. \eex$$ 称 ${\bf A}$ 为静磁场的矢势.

(2) $$\beex \bea {\bf j}_f&=\rot{\bf H}=\rot\sex{\cfrac{1}{\mu}\rot{\bf A}}\\ &=\n\cfrac{1}{\mu}\times\rot{\bf A}+\cfrac{1}{\mu}\rot\rot{\bf A}\\ &=\n\cfrac{1}{\mu}\times\rot{\bf A}-\cfrac{1}{\mu}\lap{\bf A}. \eea\eeex$$ 故 ${\bf A}$ 满足主部分离的二阶椭圆型方程组.

(3) 当 $\mu$ 为常数时, $$\bex -\lap{\bf A}=\mu{\bf j}_f\ra {\bf A}=\cfrac{\mu}{4\pi}\int_\Omega \cfrac{{\bf j}_f(P')\rd V_{P'}}{r_{P'P}}. \eex$$ 电磁场能量密度 $$\beex \bea \cfrac{1}{2}{\bf B}\cdot{\bf H} &=\cfrac{1}{2}\rot{\bf A}\cdot {\bf H}\\ &=\cfrac{1}{2}\Div({\bf A}\cdot{\bf H})+\cfrac{1}{2}{\bf A}\cdot\rot{\bf H}\\ &=\cfrac{1}{2}\Div({\bf A}\cdot{\bf H})+\cfrac{1}{2}{\bf A}\cdot {\bf j}_f; \eea \eeex$$ 电磁场能量 $$\bex U_{e,m}=\cfrac{1}{2}\int_\Omega {\bf A}\cdot{\bf j}_f\rd V. \eex$$

4. 标势法处理静磁场

(1) $$\beex \bea \Div{\bf j}_f=0&\ra \exists\ {\bf F},\st \Div{\bf F}=0,\ \rot{\bf F}={\bf j}_f\\ &\ra \rot ({\bf H}-{\bf F})={\bf 0}\\ &\ra \exists\ \phi,\st {\bf H}-{\bf F}=-\n\phi. \eea \eeex$$ 称 $\phi$ 为静磁场的标势. 而有 $$\beex \bea {\bf B}&=\mu {\bf H}=\mu({\bf F}-\n \phi),\\ -\Div(\mu \n\phi)&=-\Div(\mu {\bf F})=-\n \mu\cdot {\bf F}\\ &=0\quad\sex{\mu\mbox{ 为常数时}}. \eea \eeex$$

(2) 交界面条件 $$\beex \bea &\quad 0=[{\bf H}]\times{\bf n}=[{\bf F}-\n\phi]\times {\bf n}\\ &\ra [\phi]=0\quad\sex{[{\bf B}]\cdot{\bf n}=0\ra F\mbox{ 连续}};\\ &\quad 0=[{\bf B}]\cdot{\bf n}=[\mu {\bf F}-\mu \n\phi]\cdot{\bf n}\\ &\ra \sez{\mu\cfrac{\p \phi}{\p n}}=[\mu] {\bf F}\cdot {\bf n}. \eea \eeex$$

(3) 电磁能量密度 $$\beex \bea \cfrac{1}{2}{\bf B}\cdot{\bf H} &=\cfrac{1}{2}\mu\sex{{\bf F}-\n\phi}\cdot \sex{{\bf F}-\n\phi}\\ &=\cfrac{1}{2}\mu |{\bf F}|^2-\mu {\bf F}\cdot\n\phi+\cfrac{1}{2}\mu |\n\phi|^2\\ &=\cfrac{1}{2}\mu\sex{|{\bf F}|^2+|\n\phi|^2} -\Div(\mu{\bf F}\phi)+\phi\Div(\mu {\bf F})\\ &=\cfrac{1}{2}\mu\sex{|{\bf F}|^2+|\n\phi|^2} -\Div(\mu{\bf F}\phi)+\phi {\bf F}\cdot\n\nu; \eea \eeex$$ 电磁场能量 $$\beex \bea U_{e,m}&=\cfrac{1}{2}\int_\Omega {\bf B}\cdot{\bf H}\rd V\\ &=\cfrac{1}{2}\int_\Omega \mu|{\bf F}|^2+2\phi {\bf F}\cdot\n\mu+\mu|\n\phi|^2\rd V. \eea \eeex$$

5. 静电场与静磁场的比较 $$\bex \ba{rl} \mbox{静电场 }{\bf E}&\quad\quad\mbox{静磁场 }{\bf B}\\ ----------&\quad\quad----------\\ \mbox{无旋场 (纵场)}&\quad\quad\mbox{无源场 (横场)}\\ {\bf E}=-\n \phi&\quad\quad{\bf B}=\rot{\bf A}\quad(\Div{\bf A}=0)\\ -\Div(\ve \n\phi)=\rho_f &\quad\quad\rot\sex{\cfrac{1}{\mu}\rot{\bf A}}={\bf j}_f\\ -\lap\phi= \cfrac{1}{\ve}\rho_f\ \sex{\ve\mbox{ 为常数时 }}&\quad\quad-\lap{\bf A}=\mu{\bf j}_f\ \sex{\mu\mbox{ 为常数时}}\\ \mbox{能量 }U=\cfrac{1}{2}\int_\Omega \rho_f\phi\rd V&\quad\quad\mbox{能量 }U=\cfrac{1}{2}\int_\Omega {\bf j}_f\cdot{\bf A}\rd V\\ ----------&\quad\quad---------- \ea \eex$$

[物理学与PDEs]第1章第8节 静电场和静磁场 8.3 静磁场的更多相关文章

  1. [物理学与PDEs]第1章第8节 静电场和静磁场 8.2 稳定电流的电场

    1. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\bf 0},\\ \Div{\bf B} ...

  2. [物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场

    1. 静电场: 由静止电荷产生的稳定电场. 2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$ ...

  3. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  4. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  5. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  6. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  7. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  8. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

随机推荐

  1. 【Linux基础】查看硬件信息-系统

    1.查看计算机名 hostname 2.查看内核/操作系统/CPU信息 uname -a   4.查看操作系统版本(Linux) head -n 2 /etc/issue Red Hat Enterp ...

  2. CORS——跨域请求那些事儿

    在日常的项目开发时会不可避免的需要进行跨域操作,而在实际进行跨域请求时,经常会遇到类似 No 'Access-Control-Allow-Origin' header is present on th ...

  3. springboot2+freemarker简单使用

    一.src/main/resources/templates下新建welcome.ftl <!DOCTYPE html> <html lang="en"> ...

  4. JS正则四个反斜杠的含义

    我们首先来看如下代码,在浏览器中输出的是什么? // 在浏览器中输出的 console.log('\\'); // 输出 \ console.log('\\\\'); // 输出 \\ 一:js正则直 ...

  5. Java 200+ 面试题补充③ Dubbo 模块

    昨天在我的 Java 面试粉丝群里,有一个只有一年开发经验的小伙伴只用了三天时间,就找到了一个年薪 20 万的工作,真是替他感到开心. 他的经历告诉我们:除了加强自我实战经验之外,还要努力积累自己的理 ...

  6. flask(二)之Jinja2模板与Flask-WTF

    01-文档 官方文档:http://docs.jinkan.org/docs/jinja2/ 02-基本语义 Jinja2做构成的模板文件中,文本内容大致可以分成几个种类.比如特殊文本(不进行转义,比 ...

  7. 判断语句之单if

    什么是判断语句? 给定一个判断条件,并在程序执行过程中判断该条件是否成立,根据判断结果执行不同的操作,从而改变代码的执行顺序,实现更多的功能,这就是判断语句. 判断语句if if语句第一种格式:if  ...

  8. Spring 使用AOP——基于注解配置

    首先,使用注解实现AOP是基于AspectJ方式的. 创建包含切点方法的类 package cn.ganlixin.test; import org.aspectj.lang.annotation.P ...

  9. SpringBoot与Mybatis整合的设置

    Mybatis和Spring Boot的整合有两种方式: 第一种:使用mybatis官方提供的Spring Boot整合包实现,地址:https://github.com/mybatis/spring ...

  10. Linux程序宕掉后如何通过gdb查看出错信息

    我们在编写服务端程序的时候,由于多线程并且环境复杂,程序可能在不确定条件的情况下宕掉,还不好重新,这是我们如何获取程序的出错信息,一种方法通过打日志,有时候一些错误日志也不能体现出来,这时就用到我们的 ...