题目描述

输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
 
解题思路

已知二叉树的前序遍历和中序遍历:
PreOrder:         GDAFEMHZ
InOrder:            ADEFGHMZ
我们如何还原这颗二叉树,并求出他的后序遍历?

我们基于一个事实:中序遍历一定是 { 左子树中的节点集合 },root,{ 右子树中的节点集合 },前序遍历的作用就是找到每颗子树的root位置。

算法1
输入:前序遍历,中序遍历
1、寻找树的root,前序遍历的第一节点G就是root。
2、观察前序遍历GDAFEMHZ,知道了G是root,剩下的节点必然在root的左或右子树中的节点。
3、观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树中的节点,G右侧的HMZ必然是root的右子树中的节点,root不在中序遍历的末尾或开始就说明根节点的两颗子树都不为空。
4、观察左子树ADEF,按照前序遍历的顺序来排序为DAFE,因此左子树的根节点为D,并且A是左子树的左子树中的节点,EF是左子树的右子树中的节点。
5、同样的道理,观察右子树节点HMZ,前序为MHZ,因此右子树的根节点为M,左子节点H,右子节点Z。

观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了:

从而得到PostOrder:       AEFDHZMG
改进:
更进一步说,其实,如果仅仅要求写后续遍历,甚至不要专门占用空间保存还原后的树。只需要用一个数组保存将要得到的后序,就能实现:

具体思路如下:

左节点:


startpre=startPre+1,

startend=startPre+i-startIn

startin=startIn,

endin=i-1


右节点:


startpre=i-startIn+startPre+1,

startend=endPre

startin=i+1,

endin=endIn


具体实现代码如下:

public class ReConstructBinaryTree {

//Definition for binary tree
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}

public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode rootofpre=new TreeNode(pre[0]);
return reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);

}

//前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}
private TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {
if (startPre>endPre||startIn>endIn) {
return null;
}
TreeNode root=new TreeNode(pre[startPre]);
for (int i = 0; i < in.length; i++) {
if (root.val==in[i]) {
root.left=reConstructBinaryTree(pre, startPre+1, startPre+i-startIn, in, startIn, i-1);
root.right=reConstructBinaryTree(pre,i-startIn+startPre+1,endPre,in,i+1,endIn);
break;

}
}

return root;

}
}
}

剑指offer 4.树 重建二叉树的更多相关文章

  1. 剑指Offer(四):重建二叉树

    说明: 1.本系列是根据<剑指Offer>这个系列做的一个小笔记. 2.直接动力是因为师兄师姐找工作很难,而且机械出生的我面试算法更难. 3.刚开始准备刷LeetCode.LintCode ...

  2. 【剑指offer】07重建二叉树,C++实现

    本博文是原创博文,转载请注明出处! # 本文为牛客网<剑指offer>刷题笔记 1.题目 # 输入某二叉树的前序遍历和中序遍历的结果,重建二叉树 2.思路(递归) # 前序遍历中,第一个数 ...

  3. 剑指Offer对答如流系列 - 重建二叉树

    面试题6:重建二叉树 题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8} ...

  4. 剑指offer四之重建二叉树

    一.题目: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7 ...

  5. 【剑指offer】04 重建二叉树

    题目地址:重建二叉树 题目描述                                    输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不 ...

  6. 【剑指 Offer】07.重建二叉树

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 示例: 前序遍历 preorder = [3,9,20,15,7] 中序遍历 ...

  7. 【剑指Offer】07. 重建二叉树 解题报告(Java & Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 基本方法:线性查找根节点的位置 方法优 ...

  8. 《剑指offer》 树的子结构

    本题来自<剑指offer> 树的子结构 题目: 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 思路: 分两步走: 第一步:判断根节点,两个根节 ...

  9. 剑指Offer - 九度1368 - 二叉树中和为某一值的路径

    剑指Offer - 九度1368 - 二叉树中和为某一值的路径2013-11-23 03:46 题目描述: 输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结 ...

随机推荐

  1. Python基础学习---比较运算符

    比较运算符 注意: 不同类型数据之间只能==   !=   ,不能比较大小>   >=   <   <= 比较运算符返回一个bool值 比较运算符可以链式运算      4&g ...

  2. 字符串a-b

    #include<iostream> #include<stdio.h> #include<algorithm> #include<cmath> #in ...

  3. xss处理

    今天学习了xss,主要记载如下: https://blog.csdn.net/sdauzyh/article/details/74942737

  4. 2017-9-24模拟赛T1 个人卫生综合征(school.*)

    题目 每天 BBS 都要从家里经过城市中的一段路到学校刷五三.城市中一共有 n 个路口和 m 条双向道路,每条双向道路都连接着两个路口 a i .b i 且有一定的时间花费 v i .BBS家编号为 ...

  5. Log4net 配置文件组成

    Example: <?xml version="1.0" encoding="utf-8" ?><configuration><l ...

  6. 《团队-爬虫豆瓣top250项目-团队一阶段互评》

    团队名称:咣咣踹电脑 学号:2015035107217姓名:耿文浩 得分10 原因:组长带领的好,任务分配的好,积极帮助组员解决问题 学号:2015035107213姓名:周鑫 得分8 原因:勇于分担 ...

  7. PHP 基于pdo的数据库操作类

    http://www.php.cn/php-weizijiaocheng-404645.html <?php class Pdodb{   protected $pdo;   protected ...

  8. socket网络编程-----I/O复用之select函数

    #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/soc ...

  9. 3D数学基础(三)矩阵

    3D引擎中对于矩阵的使用非常多,介绍这些知识也是为了告诉开发者原理,更有助于开发者编写逻辑. (1)固定流水线 各种坐标系之间的转化是通过矩阵相乘得到的,这里面就涉及到了3D固定流水线.作为3D游戏开 ...

  10. python基础3、4---流程控制、运算符

    1.for循环 和while循环 for 临时变量 in 待遍历的数据: 循环体 (循环体这里一般加break,结束循环,执行else代码) else: 循环不满足条件执行的代码 while  表达式 ...