BZOJ.4144.[AMPPZ2014]Petrol(Kruskal重构树)
看别人代码的时候发现哪一步都很眼熟,突然想起来,就在四个月前我好像看过还给别人讲过?mmp=v=
果然不写写就是容易忘。写了好歹忘了的时候还能复习呢(虽然和看别人的好像也没多少差别?)。
首先非加油站的点是没有用的。考虑如何删掉这些点然后在加油站之间连对应的边。
搬这里的一张图:
因为\(b<a\ \&\&\ b<c\),所以有\(b+c<a+c\ \&\&\ b+a<a+c\),也就是到一个点时,先去一次离它最近的点加油再去其它的点一定不会更差。记\(bel[p]\)为离\(p\)点最近的加油站,\(dis[p]\)为\(bel[p]\)到\(p\)的距离,对于一条边\((u,v,w)\),若\(bel[u]\neq bel[v]\),那么就在\(bel[u],bel[v]\)之间加一条\(dis[u]+dis[v]+w\)的边即可。(因为从任何一个点出发到了\(u\),先去一次\(bel[u]\)再去别的点不会更差,所以直接和\(bel[u]\)连边就行了)
具体就是以所有加油点为起点,\(Dijkstra\)跑一遍多源最短路。
然后求一遍最小生成树。询问就判断两点间路径上的最大值即可。
注意求生成树的时候可以直接按秩合并将树高保持在\(O(\log n)\)的高度。对于询问暴力跳\(fa\)即可。
要注意图可能不连通!!
//20216kb 2600ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<int,int>
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=2e5+5;
int Enum,H[N],nxt[N<<1],to[N<<1],len[N<<1],dis[N],bel[N],F[N],fa[N],w[N],rk[N],dep[N];
char IN[MAXIN],*SS=IN,*TT=IN;
std::priority_queue<pr> q;
struct Edge
{
int u,v,w;
bool operator <(const Edge &x)const
{
return w<x.w;
}
}e[N<<1];//双向边啊
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int w,int v,int u)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
int Dijkstra()
{
static bool vis[N];
int cnt=0;
while(!q.empty())
{
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(dis[v=to[i]]>dis[x]+len[i])
dis[v]=dis[x]+len[i], bel[v]=bel[x], q.push(mp(-dis[v],v));
else if(bel[x]!=bel[v])
e[++cnt]=(Edge){bel[x],bel[v],dis[x]+dis[v]+len[i]};
}
return cnt;
}
int Find(int x)
{
return x==F[x]?x:F[x]=Find(F[x]);
}
void GetDep(int x)
{
if(fa[x]&&!dep[fa[x]]) GetDep(fa[x]);
dep[x]=dep[fa[x]]+1;
}
void Kruskal(const int n,const int m)
{
std::sort(e+1,e+1+m);
for(int i=1; i<=n; ++i) F[i]=i;
for(int i=1,r1,r2,k=1; i<=m; ++i)
{
if((r1=Find(e[i].u))==(r2=Find(e[i].v))) continue;
if(rk[r1]<rk[r2]) std::swap(r1,r2);//r2->r1
else if(rk[r1]==rk[r2]) ++rk[r1];
F[r2]=r1, fa[r2]=r1, w[r2]=e[i].w;
}
for(int i=1; i<=n; ++i) if(!dep[i]) GetDep(i);
}
inline bool Query()
{
int u=read(),v=read(),val=read();
if(Find(u)!=Find(v)) return 0;//!
if(dep[u]<dep[v]) std::swap(u,v);
for(int tmp=dep[v]; dep[u]>tmp; u=fa[u])
if(w[u]>val) return 0;
for(; u!=v; u=fa[u],v=fa[v])
if(w[u]>val||w[v]>val) return 0;
return 1;
}
int main()
{
const int n=read(),s=read(),m=read();
memset(dis,0x7f,sizeof dis);
for(int i=1,x; i<=s; ++i) dis[x=read()]=0, bel[x]=x, q.push(mp(0,x));
for(int i=1; i<=m; ++i) AE(read(),read(),read());
int cnt=Dijkstra(); Kruskal(n,cnt);
for(int Q=read(); Q--; puts(Query()?"TAK":"NIE"));
return 0;
}
BZOJ.4144.[AMPPZ2014]Petrol(Kruskal重构树)的更多相关文章
- BZOJ 4144: [AMPPZ2014]Petrol
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 457 Solved: 170[Submit][Sta ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- BZOJ 4242: 水壶(Kruskal重构树 + Bfs)
题意 一块 \(h ∗ w\) 的区域,存在障碍.空地.\(n\) 个建筑,从一个建筑到另一个建筑的花费为:路径上最长的连续空地的长度. \(q\) 次询问:从建筑 \(s_i\) 到 \(t_i\) ...
- bzoj 3545: [ONTAK2010]Peaks Kruskal重构树
题目: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经 ...
- BZOJ 5415: [Noi2018]归程(kruskal重构树)
解题思路 \(NOI2018\)的\(Day1\) \(T1\),当时打网络赛的时候不会做.学了一下\(kruskal\)重构树后发现问题迎刃而解了.根据\(kruskal\)的性质,如果要找从\(u ...
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
- BZOJ.4793.[CERC2016]Hangar Hurdles(Kruskal重构树 BFS)
题目链接 \(Description\) 有一个\(n\times n\)的正方形网格,上面有若干障碍点.\(q\)次询问,每次询问把一个正方形箱子从\((x1,y1)\)推到\((x2,y2)\) ...
随机推荐
- 一次基于innobackupex备份及binlog的单表恢复操作
[环境介绍] 系统环境:Red Hat Enterprise Linux Server release 7.0 (Maipo) + Server version: 5.7.18-log MySQL C ...
- Swift 4 Hex Color
上点干货,写个extension, 可以通过hex值去设置Color,以及通过UIColor的color case 去得到hex值. extension UIColor { var toHex ...
- 转化.vdi到.vmdk
OracleVirtualBox转化.vdi到.vmdk E:\Genymotion-deployed\CentOS_7_64>"D:/Program Files/Oracle/Vir ...
- 怎样解决canvas 插件 和html 页面中的事件冲突问题 ?
很简单 ,在html 执行事件所在的div中 设置 position:relative;
- 【转】Java中的新生代、老年代、永久代和各种GC
JVM中的堆,一般分为三大部分:新生代.老年代.永久代: 1 新生代 主要是用来存放新生的对象.一般占据堆的1/3空间.由于频繁创建对象,所以新生代会频繁触发MinorGC进行垃圾回收. 新生代又分为 ...
- Tomcat 改端口
Tomcat 改端口 进入 tomcat 解压包下面的 conf 目录 打开文件 server.xml 找到以下 三处位置,并改为对应端口 1)找到 8005 <Server port=&quo ...
- Spring Cloud 2-Zuul 网关服务(六)
Spring Cloud Zuul 1.pom.xml 2.application.yml Application.java 1.pom.xml <!-- zuul 网关服务 --> ...
- 关于shell变量的继承总结
结论: 默认,父shell和子shell的变量是隔离的. sh方式运行脚本,会重新开启一个子shell,无法继承父进程的普通变量,能继承父进程export的全局变量. source或者. 方式运行脚本 ...
- 从基本理解到深入探究 Linux kernel 通知链(notifier chain)【转】
转自:https://blog.csdn.net/u014134180/article/details/86563754 版权声明:本文为博主原创文章,未经博主允许不得转载.——Wu_Being ht ...
- c++消息队列的实现
#ifndef NET_FRAME_CONCURRENT_QUEUE_H #define NET_FRAME_CONCURRENT_QUEUE_H #include <queue> # ...