传送门

可以发现,最短路一定要经过墙壁的断点。

那么把房间看作一个有向图,墙壁的断点为节点,求从起点到终点的最短路。

这道题的难点在于建图。枚举所有的断点,若可以走则加入这条边。

判断两点是否连通,即为判断两点之间是否有其他墙壁阻隔。

两点的连线可以看作一个一次函数$y=kx+B$,

$k=(x2-x1)/(y2-y1),B=y1-k*x1$

得到函数解析式后,算出中间的每一个墙壁与这条直线交点的$y$坐标,

由于给出墙壁的$x$是递增的,所以只需要枚举墙壁$x1+1$~$x2-1$。

若这个$y$恰好在墙壁的缺口里,则是连通的。

边的权值即为两点之间的欧几里德距离:$sqrt( (x2-x1)^2 + (y2-y1)^2 )$

边的序号:由于一条墙壁只有四个断点,则某个断点的序号可以记作$x*4+y[i]$,$i$为第几个断点。

数据范围很小,最后用floyd求出最短路即可。

注意开double!

代码如下

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define MogeKo qwq
using namespace std;
const int maxn = ;
const int INF = ;
int n; double e[][]; struct wall {
double x,y[];
} w[maxn]; bool check(int a,int b,int g1,int g2) {
if(b-a<)return true;
double xi = w[a].x,xii = w[b].x;
double yi = w[a].y[g1],yii = w[b].y[g2];
double k = (yii-yi)/(xii-xi);
double B = yi-k*xi;
for(int i = a+; i <= b-; i++) {
double yy = k*w[i].x+B;
if(!((yy>w[i].y[]&&yy<w[i].y[])||(yy>w[i].y[]&&yy<w[i].y[])))return false;
}
return true;
} void add(int a,int b,int g1,int g2) {
if(!check(a,b,g1,g2))return;
double xi = w[a].x,xii = w[b].x;
double yi = w[a].y[g1],yii = w[b].y[g2];
e[(a<<)+g1][(b<<)+g2] = sqrt(pow(xii-xi,)+pow(yii-yi,));
} void floyd() {
for(int k = ; k <= (n<<)+; k++)
for(int i = ; i <= (n<<)+; i++)
for(int j = ; j <= (n<<)+; j++)
e[i][j] = min(e[i][j],e[i][k]+e[k][j]);
} int main() {
scanf("%d",&n);
for(int i = ; i <= n; i++) {
scanf("%lf",&w[i].x);
for(int j = ; j <= ; j++)
scanf("%lf",&w[i].y[j]);
}
w[].x = ,w[++n].x = ;
for(int i = ; i <= ; i++)
w[].y[i] = w[n].y[i] = ;
for(int i = ; i <= (n<<)+; i++)
for(int j = ; j <= (n<<)+; j++)
e[i][j] = INF;
for(int i = ; i <= n; i++)
for(int j = i+; j <= n; j++)
for(int k = ; k <= ; k++)
for(int l = ; l <= ; l++)
add(i,j,k,l);
floyd();
printf("%.2lf",e[][(n<<)+]);
return ;
}

P1354 房间最短路问题的更多相关文章

  1. [Luogu P1354]房间最短路问题

    这是一道紫题,然而实际上我觉得也就蓝题难度甚至不到. and,这道题就是一道数学题,代码模拟计算过程. 求最短路嘛,肯定要考虑建图,只需要把中间的墙上每个口的边缘处的点作为图中的点就行.至于为什么,显 ...

  2. luogu P1354 房间最短路问题 计算几何_Floyd_线段交

    第一次写计算几何,还是很开心的吧(虽然题目好水qaq) 暴力枚举端点,暴力连边即可 用线段交判一下是否可行. Code: #include <cstdio> #include <al ...

  3. 【u026】房间最短路问题

    描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 格式 输入格式 第一排为n(n<=20),墙的数目. 接下来n排 ...

  4. luogu 1354 房间最短路问题 线段与直线相交 最短路

    题目链接 题目描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 输入输出格式 输入格式: 第一排为n(n<=20) ...

  5. luoguP1354房间最短路问题

    判断两点间连通性,建图跑floyed #include<bits/stdc++.h> using namespace std; ; struct node { ],x; }q[N];dou ...

  6. ACM/ICPC 之 DP解有规律的最短路问题(POJ3377)

    //POJ3377 //DP解法-解有规律的最短路问题 //Time:1157Ms Memory:12440K #include<iostream> #include<cstring ...

  7. ACM 房间安排

    房间安排 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 2010年上海世界博览会(Expo2010),是第41届世界博览会.于2010年5月1日至10月31日期间, ...

  8. 房间安排-nyoj168

    描述 2010年上海世界博览会(Expo2010),是第41届世界博览会.于2010年5月1日至10月31日期间,在中国上海市举行.本次世博会也是由中国举办的首届世界博览会.上海世博会以“城市,让生活 ...

  9. 房间声学原理与Schroeder混响算法实现

    一.混响时间的计算与预测 所谓混响就是声音的直达声与反射声很紧凑的重合在一起时人耳所听到的声音,这个效果在语音的后期处理时特别有用.能产生混响最常见的场景就是房间内,尤其是空旷的房间中. 混响有直达声 ...

随机推荐

  1. 页面优化,DocumentFragment对象详解

    一.前言 最近项目不是很忙,所以去看了下之前总想整理的重汇和回流的相关资料,关于回流优化,提到了DocumentFragment的使用,这个对象在3年前我记得是有看过的,但是一直没深入了解过,所以这里 ...

  2. 用TensorFlow教你手写字识别

    博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Il ...

  3. Redis数据类型使用场景及有序集合SortedSet底层实现详解

    Redis常用数据类型有字符串String.字典dict.列表List.集合Set.有序集合SortedSet,本文将简单介绍各数据类型及其使用场景,并重点剖析有序集合SortedSet的实现. Li ...

  4. Linux基础命令第三天

    1,vim编辑器 命令模式下: pageup 往上翻页 pagedown 往下翻页 H 光标移动到屏幕首行 gg 光标动荡到文档的首行,如果前面加上n,表示移动到n行 G 移动文档最后一行 /name ...

  5. CAN总线学习记录之四:位定时与同步

    一.位定时 1.1 比特率和波特率 1)位速率:又叫做比特率(bit rata).信息传输率,表示的是单位时间内,总线上传输的信息量,即每秒能够传输的二进制位的数量,单位是bit per second ...

  6. webpack4.0各个击破(3)—— Assets篇

    目录 一. Assets资源的基本处理需求 二. webpack处理引用资源 2.1 资源打标 2.2 引用优化 2.3 sprites雪碧图合成 2.4 图片压缩及其他 webpack作为前端最火的 ...

  7. C#工具:利用HttpClient调用WebApi

    可以利用HttpClient来进行Web Api的调用.由于WebA Api的调用本质上就是一次普通的发送请求与接收响应的过程, 所有HttpClient其实可以作为一般意义上发送HTTP请求的工具. ...

  8. 学JAVA第十一天,属性与方法

    今天清明节假期结束第二天,昨天请了一天假去考科目二,还好考过了,O(∩_∩)O哈哈~~~~ 今天老师讲了类的属性与方法的使用 就用代码来说明吧: package pkg3;public class T ...

  9. Spring笔记03_AOP

    目录 1. AOP 1.1 AOP介绍 1.1.1 什么是AOP 1.1.2 AOP实现原理 1.1.3 AOP术语[掌握] 1.2 AOP的底层实现(了解) 1.2.1 JDK动态代理 1.2.2 ...

  10. Sql Server 2008日志满的解决办法

    通过sql命令 USE ZGZY; GO --由完整模式设置为简单恢复模式 ALTER DATABASE ZGZY SET RECOVERY SIMPLE WITH NO_WAIT GO --收缩日志 ...