Easy Finding
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16178   Accepted: 4343

Description

Given a M×N matrix A. Aij ∈ {0, 1} (0 ≤ i < M, 0 ≤ j < N), could you find some rows that let every cloumn contains and only contains one
1.

Input

There are multiple cases ended by EOF. Test case up to 500.The first line of input is
M, N (M ≤ 16, N ≤ 300). The next M lines every line contains
N integers separated by space.

Output

For each test case, if you could find it output "Yes, I found it", otherwise output "It is impossible" per line.

Sample Input

3 3
0 1 0
0 0 1
1 0 0
4 4
0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0

Sample Output

Yes, I found it
It is impossible

Source

解题思路:

题意为由01组成的矩阵,问能不能挑出几行使组成的新矩阵每列仅仅有一个1.

套用Dlx模板,只是G++ 超时。C++勉强能过。

代码:

#include <iostream>
#include <stdio.h>
using namespace std;
const int maxnode=5000;
const int maxm=310;
const int maxn=18; struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[maxn];//行头节点
int S[maxm];//每列有多少个节点
int ansd,ans[maxn];//假设有答案,则选了ansd行。详细是哪几行放在ans[ ]数组里面。ans[0~ansd-1]; void init(int _n,int _m)
{
n=_n,m=_m;
for(int i=0;i<=m;i++)
{
S[i]=0;
U[i]=D[i]=i;//初始状态下,上下自己指向自己
L[i]=i-1;
R[i]=i+1;
}
R[m]=0,L[0]=m;
size=m;//编号,每列都有一个头节点,编号1-m
for(int i=1;i<=n;i++)
H[i]=-1;//每一行的头节点
} void link(int r,int c)//第r行,第c列
{
++S[Col[++size]=c];//第size个节点所在的列为c,当前列的节点数++
Row[size]=r;//第size个节点行位置为r
D[size]=D[c];//以下这四句头插法(图是倒着的?)
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0)
H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
} void remove(int c)//删除节点c,以及c上下节点所在的行,每次调用这个函数。都是从列头节点開始向下删除。这里c也能够理解为第c列
{ //由于第c列的列头节点编号为c
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
} void resume(int c)//恢复节点c,以及c上下节点所在的行(同上,也能够理解为从第c列的头节点開始恢复
{
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]]; //打这一行太纠结了 T T
L[R[c]]=R[L[c]]=c;
} bool dance(int d)//递归深度
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
if(S[i]<S[c])
c=i;
remove(c);//找到节点数最少的列,当前元素不是原图上0。1的节点,而是列头节点
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];//列头节点以下的一个节点
for(int j=R[i];j!=i;j=R[j])
remove(Col[j]);
if(dance(d+1))//找到,返回
return true;
for(int j=L[i];j!=i;j=L[j])
resume(Col[j]);
}
resume(c);
return false;
}
}; DLX x;
int n,m; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
x.init(n,m);
int num;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>num;
if(num)
x.link(i,j);
}
}
if(!x.dance(0))
printf("It is impossible\n");
else
printf("Yes, I found it\n");
}
return 0;
}

[ACM] POJ 3740 Easy Finding (DLX模板题)的更多相关文章

  1. [ACM] POJ 3740 Easy Finding (DFS)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16202   Accepted: 4349 Description Give ...

  2. poj 3740 Easy Finding 二进制压缩枚举dfs 与 DLX模板详细解析

    题目链接:http://poj.org/problem?id=3740 题意: 是否从0,1矩阵中选出若干行,使得新的矩阵每一列有且仅有一个1? 原矩阵N*M $ 1<= N <= 16 ...

  3. poj 3740 Easy Finding(Dancing Links)

    Easy Finding Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15668   Accepted: 4163 Des ...

  4. poj 3740 Easy Finding 精确匹配

    题目链接 dlx的第一题, 真是坎坷..... #include <iostream> #include <vector> #include <cstdio> #i ...

  5. POJ 3740 Easy Finding

    #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using ...

  6. POJ 3068 运送危险化学品 最小费用流 模板题

    "Shortest" pair of paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1215 ...

  7. POJ 1287 Networking【kruskal模板题】

    传送门:http://poj.org/problem?id=1287 题意:给出n个点 m条边 ,求最小生成树的权 思路:最小生树的模板题,直接跑一遍kruskal即可 代码: #include< ...

  8. POJ 1502 MPI Maelstrom(模板题——Floyd算法)

    题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...

  9. POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】

    <题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...

随机推荐

  1. Javascript Apply和Call的使用

    Apply Function.apply(obj,args)方法能接收两个参数obj:这个对象将代替Function类里this对象args:这个是数组,它将作为参数传给Function(args-- ...

  2. 今天在CSDN看懂这个帖子,也是我的困惑,记录一下(过了三十的码农,你选择的是哪个,说出你的想法)

    http://bbs.csdn.net/topics/390944177 1.继续开发生涯,做资深码农,从senior.team lead.tech lead到principal,如果你无欲无求,可以 ...

  3. 浅谈Java中静态初始化块跟非初始化块

    众所周知在JAVA编程语言中有两种初始化块:   静态初始化块 非静态初始化块 他们到底有什么区别呢?今天就浅谈一下JAVA中静态初始化块和非静态初始化块的区别   静态初始化块 定义:       ...

  4. ECSHOP生成缩略图模糊

    原因是因为ECSHOP生成缩略图时,用到的函数 imagejpeg()  没有设置质量参数.注释:质量参数为可选项,范围从 0(最差质量,文件更小)到 100(最佳质量,文件最大).如果没有设置质量参 ...

  5. 最简单简洁高效的Json数据解析

    一.无图无真相 二.主要代码 1.导入jar包 拷贝fastjson.jar包到projectlibs包下 2.封装工具类JsonUtil.java package com.example.parse ...

  6. php中const和static的区别和联系

    1.const是类中的常量,类外用define来定义常量2.const只可以修饰类的属性,不能修饰类的方法,static可以修饰属性,也可以修饰方法3.const和static都属于类本身,而不属于n ...

  7. python——super()

    一.问题的发现与提出 在Python类的方法(method)中,要调用父类的某个方法,在Python 2.2以前,通常的写法如代码段1: class A: def __init__(self): pr ...

  8. react-native 扫一扫功能(二维码扫描)功能开发

    1.安装插件 yarn add react-native-smart-barcode 2.关联 react-native link react-native-smart-barcode 3.修改 an ...

  9. 获取web应用路径 // "/" 表示class 根目录

    /** * 获取web应用路径 * @Description : 方法描述 * @Method_Name : getRootPath * @return * @return : String * @C ...

  10. 给UITextField设置头或尾空白

    有时候,我们需要在UITextField的头尾加入一些空白,如下图所示: 其中,黄色和红色部分代表空白. 实现起来,比较简单,只需要设置UITextField的leftView.leftViewMod ...