Easy Finding
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16178   Accepted: 4343

Description

Given a M×N matrix A. Aij ∈ {0, 1} (0 ≤ i < M, 0 ≤ j < N), could you find some rows that let every cloumn contains and only contains one
1.

Input

There are multiple cases ended by EOF. Test case up to 500.The first line of input is
M, N (M ≤ 16, N ≤ 300). The next M lines every line contains
N integers separated by space.

Output

For each test case, if you could find it output "Yes, I found it", otherwise output "It is impossible" per line.

Sample Input

3 3
0 1 0
0 0 1
1 0 0
4 4
0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0

Sample Output

Yes, I found it
It is impossible

Source

解题思路:

题意为由01组成的矩阵,问能不能挑出几行使组成的新矩阵每列仅仅有一个1.

套用Dlx模板,只是G++ 超时。C++勉强能过。

代码:

#include <iostream>
#include <stdio.h>
using namespace std;
const int maxnode=5000;
const int maxm=310;
const int maxn=18; struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[maxn];//行头节点
int S[maxm];//每列有多少个节点
int ansd,ans[maxn];//假设有答案,则选了ansd行。详细是哪几行放在ans[ ]数组里面。ans[0~ansd-1]; void init(int _n,int _m)
{
n=_n,m=_m;
for(int i=0;i<=m;i++)
{
S[i]=0;
U[i]=D[i]=i;//初始状态下,上下自己指向自己
L[i]=i-1;
R[i]=i+1;
}
R[m]=0,L[0]=m;
size=m;//编号,每列都有一个头节点,编号1-m
for(int i=1;i<=n;i++)
H[i]=-1;//每一行的头节点
} void link(int r,int c)//第r行,第c列
{
++S[Col[++size]=c];//第size个节点所在的列为c,当前列的节点数++
Row[size]=r;//第size个节点行位置为r
D[size]=D[c];//以下这四句头插法(图是倒着的?)
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0)
H[r]=L[size]=R[size]=size;
else
{
R[size]=R[H[r]];
L[R[H[r]]]=size;
L[size]=H[r];
R[H[r]]=size;
}
} void remove(int c)//删除节点c,以及c上下节点所在的行,每次调用这个函数。都是从列头节点開始向下删除。这里c也能够理解为第c列
{ //由于第c列的列头节点编号为c
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[Col[j]];
}
} void resume(int c)//恢复节点c,以及c上下节点所在的行(同上,也能够理解为从第c列的头节点開始恢复
{
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++S[Col[U[D[j]]=D[U[j]]=j]]; //打这一行太纠结了 T T
L[R[c]]=R[L[c]]=c;
} bool dance(int d)//递归深度
{
if(R[0]==0)
{
ansd=d;
return true;
}
int c=R[0];
for(int i=R[0];i!=0;i=R[i])
if(S[i]<S[c])
c=i;
remove(c);//找到节点数最少的列,当前元素不是原图上0。1的节点,而是列头节点
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];//列头节点以下的一个节点
for(int j=R[i];j!=i;j=R[j])
remove(Col[j]);
if(dance(d+1))//找到,返回
return true;
for(int j=L[i];j!=i;j=L[j])
resume(Col[j]);
}
resume(c);
return false;
}
}; DLX x;
int n,m; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
x.init(n,m);
int num;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>num;
if(num)
x.link(i,j);
}
}
if(!x.dance(0))
printf("It is impossible\n");
else
printf("Yes, I found it\n");
}
return 0;
}

[ACM] POJ 3740 Easy Finding (DLX模板题)的更多相关文章

  1. [ACM] POJ 3740 Easy Finding (DFS)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16202   Accepted: 4349 Description Give ...

  2. poj 3740 Easy Finding 二进制压缩枚举dfs 与 DLX模板详细解析

    题目链接:http://poj.org/problem?id=3740 题意: 是否从0,1矩阵中选出若干行,使得新的矩阵每一列有且仅有一个1? 原矩阵N*M $ 1<= N <= 16 ...

  3. poj 3740 Easy Finding(Dancing Links)

    Easy Finding Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15668   Accepted: 4163 Des ...

  4. poj 3740 Easy Finding 精确匹配

    题目链接 dlx的第一题, 真是坎坷..... #include <iostream> #include <vector> #include <cstdio> #i ...

  5. POJ 3740 Easy Finding

    #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using ...

  6. POJ 3068 运送危险化学品 最小费用流 模板题

    "Shortest" pair of paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1215 ...

  7. POJ 1287 Networking【kruskal模板题】

    传送门:http://poj.org/problem?id=1287 题意:给出n个点 m条边 ,求最小生成树的权 思路:最小生树的模板题,直接跑一遍kruskal即可 代码: #include< ...

  8. POJ 1502 MPI Maelstrom(模板题——Floyd算法)

    题目: BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distri ...

  9. POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】

    <题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...

随机推荐

  1. python正则表达式-re模块

    目录: 一.正则函数 二.re模块调用 三.贪婪模式 四.分组 五.正则表达式修饰符 六.正则表达式模式 七.常见的正则表达式 导读: 想要使用python的正则表达式功能就需要调用re模块,re模块 ...

  2. 重要的ui组件——Behavior

    v7包下的组件类似CoordinatorLayout推出也有一段时间了,大家使用的时候应该会体会到其中很多的便利,今天这篇文章带大家来了解一个比较重要的ui组件——Behavior.从字面意思上就可以 ...

  3. Oracle数据库实现获取前几条数据的方法

    如何在Oracle数据库中实现获取前几条数据的方法呢?就是类似SQL语句中的SELECT TOP N的方法.本文将告诉您答案,举例说明了哟!   1.在Oracle中实现SELECT TOP N : ...

  4. 2017.4.19 慕课网-通过自动回复机器人学习mybatis

    开发前的分析 1.技能前提 JSP JSTL EL JS/JQUERY Servlet JavaBean JDBC(后期再用mybatis,这样体会更深) MYSQL 2.需求分析和模块划分 (1)基 ...

  5. SQL注入的几种有用办法

    一.查询表中包括有多少列: 这里以DISCUZ举例说明,例如以下 select * FROM pre_forum_thread ORDER BY 80 返回,Unknown column '80' i ...

  6. Java程序猿的JavaScript学习笔记(12——jQuery-扩展选择器)

    计划按例如以下顺序完毕这篇笔记: Java程序猿的JavaScript学习笔记(1--理念) Java程序猿的JavaScript学习笔记(2--属性复制和继承) Java程序猿的JavaScript ...

  7. Android学习(十) SQLite 基于内置函数的操作方式

    main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...

  8. 网站拓扑图(来自qq)

  9. Android蓝牙

    代码地址如下:http://www.demodashi.com/demo/12772.html 前言:最近,新换了一家公司,公司的软件需要通过蓝牙与硬件进行通讯,于是趁此机会将Android蓝牙详细的 ...

  10. Android 关于SD的操作

    1 http://www.cnblogs.com/shaoyangjiang/archive/2012/03/09/2388178.html 2