题意

给出 \(n,k\) , \(n\le10^9,k\le10^6\) ,求 \(\sum_{i=1}^n i^k(mod\;10^9+7)\)

题解

自然数幂次和,是一个\(k+1\)次多项式,那么算出\(k+2\)个值然后差值就行了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e6+5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int f[N],inv[N];
int n,k;
inline int Inv(R int x){return x<=k?inv[x]:ksm(x,P-2);}
int Large(int k,int n){
if(k<=n)return f[k];
int ty=(n&1)?P-1:1,tmp=1,res=0;
fp(i,1,n)tmp=1ll*tmp*(k-i)%P*Inv(i)%P;
fp(i,0,n){
res=add(res,1ll*f[i]*tmp%P*ty%P);
tmp=1ll*tmp*(k-i)%P*Inv(k-i-1)%P*(n-i)%P*Inv(i+1)%P;
ty=P-ty;
}
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&k);
inv[0]=inv[1]=1;fp(i,2,k)inv[i]=1ll*inv[P%i]*(P-P/i)%P;
fp(i,1,k+1)f[i]=add(f[i-1],ksm(i,k));
printf("%d\n",Large(n,k+1));
return 0;
}

CF622F The Sum of the k-th Powers(拉格朗日插值)的更多相关文章

  1. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  2. CF 622 F The Sum of the k-th Powers —— 拉格朗日插值

    题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...

  3. CF 622F The Sum of the k-th Powers——拉格朗日插值

    题目:http://codeforces.com/problemset/problem/622/F 发现 sigma(i=1~n) i 是一个二次的多项式( (1+n)*n/2 ),sigma(i=1 ...

  4. [题解] CF622F The Sum of the k-th Powers

    CF622F The Sum of the k-th Powers 题意:给\(n\)和\(k\),让你求\(\sum\limits_{i = 1} ^ n i^k \ mod \ 10^9 + 7\ ...

  5. 解题:CF622F The Sum of the k-th Powers

    题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...

  6. 「CF622F」The Sum of the k-th Powers「拉格朗日插值」

    题意 求\(\sum_{i=1}^n i^k\),\(n \leq 10^9,k \leq 10^6\) 题解 观察可得答案是一个\(k+1\)次多项式,我们找\(k+2\)个值带进去然后拉格朗日插值 ...

  7. Codeforces D. The Sum of the k-th Powers(拉格朗日插值)

    题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...

  8. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

  9. [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  10. LeetCode862. Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

随机推荐

  1. 如何使用SSDT进行SQL数据库的自动化部署到生产环境和版本控制

    简介 在开发过程,我们常常会遇到数据库环境部署的问题,当部署正式环境中,数据库产生的多文件脚本在管理上就容易出现混乱,特别是你还没有权限访问正式环境的情况,就更为困难.SSDT为我们提供了很好的解决方 ...

  2. python-字典和json

    Python的字典和JSON在表现形式上非常相似 #这是Python中的一个字典 dic = { 'str': 'this is a string', 'list': [1, 2, 'a', 'b'] ...

  3. 第二章 python基础(二)

    第九节 函数 函数就是完成特定功能的一个语句组,这组语句可以作为一个单位使用,并且给它取一个名字. 可以通过函数名在程序的不同地方多次执行(这通常叫做函数调用),却不需要在所有地方都重复编写这些语句. ...

  4. utc时间、本地时间及时间戳转化

    1.时间戳的概念 时间戳的定义请看百科unix时间戳,需要注意的时间戳为当前时刻减去UTC时间(1970.1.1)零点时刻的秒数差,与当前系统所处的时区无关,同一时刻不管在任何时区下得到的时间戳都是一 ...

  5. [BZOJ2962][清华集训]序列操作

    bzoj luogu 题意 有一个长度为\(n\) 的序列,有三个操作: \(I \ \ a\ b\ c\ :\)表示将\([a,b]\)这一段区间的元素集体增加\(c\): \(R \ \ a\ b ...

  6. 洛谷【P1138】第k小整数

    题目传送门:https://www.luogu.org/problemnew/show/P1138 桶排: 对于值域在可以接受的范围内时,我们可以用不依赖比较的桶排去将数据排序.因为桶排不依赖比较排序 ...

  7. POJ 1503 Integer Inquiry(大数相加)

    一.Description One of the first users of BIT's new supercomputer was Chip Diller. He extended his exp ...

  8. NB-IoT知识

    通常,我们把物联网设备分为三类: ①无需移动性,大数据量(上行),需较宽频段,比如城市监控摄像头. ②移动性强,需执行频繁切换,小数据量,比如车队追踪管理. ③无需移动性,小数据量,对时延不敏感,比如 ...

  9. 不支持PowerShell 2.0版本(don't support PowerShell version 2.0. )

    在“程序包管理器控制台”使用命令“update-database”会提示:The Entity Framework Core Package Manager Console Tools don't s ...

  10. java.util.Date、java.sql.Date、java.sql.Time、java.sql.Timestamp区别和联系

    java.util.Date.java.sql.Date.java.sql.Time.java.sql.Timestamp区别和联系 栏目:Java基础 作者:admin 日期:2015-04-19  ...