一.网络通信原理

  1.  互联网的本质就是一系列的网络协议

  2.  互联网协议按照功能不同分为osi七层或tcp/ip五层或tcp/ip四层

  

各层的功能简述:
【1】物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换),这一层的数据叫做比特。   【2】数据链路层:定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问,这一层通常还提供错误检测和纠正,以确保数据的可靠传输。   【3】网络层:在位于不同地理位置的网络中的两个主机系统之间提供连接和路径选择,Internet的发展使得从世界各站点访问信息的用户数大大增加,而网络层正是管理这种连接的层。   【4】传输层:定义了一些传输数据的协议和端口号(WWW端口80等),如:TCP(传输控制协议,传输效率低,可靠性强,用于传输可靠性要求高,数据量大的数据),UDP(用户数据报协议,与TCP特性恰恰相反,用于传输可靠性要求不高,数据量小的数据,如QQ聊天数据就是通过这种方式传输的), 主要是将从下层接收的数据进行分段和传输,到达目的地址后再进行重组,常常把这一层数据叫做段。   【5】会话层:通过传输层(端口号:传输端口与接收端口)建立数据传输的通路,主要在你的系统之间发起会话或者接受会话请求(设备之间需要互相认识可以是IP也可以是MAC或者是主机名)。   【6】表示层:可确保一个系统的应用层所发送的信息可以被另一个系统的应用层读取。例如,PC程序与另一台计算机进行通信,其中一台计算机使用扩展二一十进制交换码(EBCDIC),而另一台则使用美国信息交换标准码(ASCII)来表示相同的字符。如有必要,表示层会通过使用一种通格式来实现多种数据格式之间的转换。   【7】应用层: 是最靠近用户的OSI层,这一层为用户的应用程序(例如电子邮件、文件传输和终端仿真)提供网络服务。 各层中涉及的协议的简单解释:
应用层
  ·DHCP(动态主机分配协议)
  · DNS (域名解析)
  · FTP(File Transfer Protocol)文件传输协议
  · Gopher (英文原义:The Internet Gopher Protocol 中文释义:(RFC-1436)网际Gopher协议)
  · HTTP (Hypertext Transfer Protocol)超文本传输协议
  · IMAP4 (Internet Message Access Protocol 4) 即 Internet信息访问协议的第4版本
  · IRC (Internet Relay Chat )网络聊天协议
  · NNTP (Network News Transport Protocol)RFC-977)网络新闻传输协议
  · XMPP 可扩展消息处理现场协议
  · POP3 (Post Office Protocol 3)即邮局协议的第3个版本
  · SIP 信令控制协议
  · SMTP (Simple Mail Transfer Protocol)即简单邮件传输协议
  · SNMP (Simple Network Management Protocol,简单网络管理协议)
  · SSH (Secure Shell)安全外壳协议
  · TELNET 远程登录协议
  · RPC (Remote Procedure Call Protocol)(RFC-1831)远程过程调用协议
  · RTCP (RTP Control Protocol)RTP 控制协议
  · RTSP (Real Time Streaming Protocol)实时流传输协议
  · TLS (Transport Layer Security Protocol)安全传输层协议
  · SDP( Session Description Protocol)会话描述协议
  · SOAP (Simple Object Access Protocol)简单对象访问协议
  · GTP 通用数据传输平台
  · STUN (Simple Traversal of UDP over NATs,NAT 的UDP简单穿越)是一种网络协议
  · NTP (Network Time Protocol)网络校时协议
传输层
  ·TCP(Transmission Control Protocol)传输控制协议
  · UDP (User Datagram Protocol)用户数据报协议
  · DCCP (Datagram Congestion Control Protocol)数据报拥塞控制协议
  · SCTP(STREAM CONTROL TRANSMISSION PROTOCOL)流控制传输协议
  · RTP(Real-time Transport Protocol或简写RTP)实时传送协议
  · RSVP (Resource ReSer Vation Protocol)资源预留协议
  · PPTP ( Point to Point Tunneling Protocol)点对点隧道协议
网络层
IP(IPv4 · IPv6) Internet Protocol(网络之间互连的协议)
ARP : Address Resolution Protocol即地址解析协议,实现通过IP地址得知其物理地址。
RARP :Reverse Address Resolution Protocol 反向地址转换协议允许局域网的物理机器从网关服务器的 ARP 表或者缓存上请求其 IP 地址。
ICMP :(Internet Control Message Protocol)Internet控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。
ICMPv6:
IGMP :Internet 组管理协议(IGMP)是因特网协议家族中的一个组播协议,用于IP 主机向任一个直接相邻的路由器报告他们的组成员情况。
RIP : 路由信息协议(RIP)是一种在网关与主机之间交换路由选择信息的标准。
OSPF : (Open Shortest Path First开放式最短路径优先).
BGP :(Border Gateway Protocol )边界网关协议,用来连接Internet上独立系统的路由选择协议
IS-IS:(Intermediate System to Intermediate System Routing Protocol)中间系统到中间系统的路由选择协议.
IPsec:“Internet 协议安全性”是一种开放标准的框架结构,通过使用加密的安全服务以确保在 Internet 协议 (IP) 网络上进行保密而安全的通讯。
数据链路层
  802.11 · 802.16 · Wi-Fi · WiMAX · ATM · DTM · 令牌环 · 以太网 · FDDI · 帧中继 · GPRS · EVDO · HSPA · HDLC · PPP · L2TP · ISDN
物理层
  以太网物理层 · 调制解调器 · PLC · SONET/SDH · G.709 · 光导纤维 · 同轴电缆 · 双绞线 各层功能及协议的简单解释

各层功能及协议的简单解释

各层常用物理设备

-------------------------------------------------------------------------------------------

@@物理层

  简单的说就是物理设备,网线,结口,无线电波这一类,主要起连接作用

  物理层功能:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0

----------------------------------------------------------------------------------------

@@数据链路层

  由来:单纯的0,1电信号并没有意义,有一定的规则说

  多少多少位电信号为一组,每组是怎么划分的

  数据链层的功能:定义了电信号的分组方式

  

以太网协议:

    早期的时候各个公司都有自己的分组方式,后来形成了统一的标准,即以太网协议ethernet

    ethernet规定

  • 一组电信号构成一个数据包,叫做‘帧’
  • 每一数据帧分成:报头head和数据data两部分
       head                        data                             

  head包含:(固定18个字节)

  • 发送者/源地址,6个字节
  • 接收者/目标地址,6个字节
  • 数据类型,6个字节

  data包含:(最短46字节,最长1500字节)

  • 数据包的具体内容

    head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送

mac地址:

    head中包含的源和目标地址由来:ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址

    mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)

---------------------------------------------------------------------------------------------------

@@网络层

 网络层由来:有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了,问题是世界范围的互联网是由

    一个个彼此隔离的小的局域网组成的,那么如果所有的通信都采用以太网的广播方式,那么一台机器发送的包全世界都会收到,

    这就不仅仅是效率低的问题了,这会是一种灾难

上图结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是。如果是就采用广播的方式发送,如果不是,

    就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关

    网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址

  IP协议:

  • 规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
  • 范围0.0.0.0-255.255.255.255 (4个点分十进制,也就是4个8位二进制数)
  • 一个ip地址通常写成四段十进制数,例:172.16.10.1

  ipv6,通过上面可以看出,ip紧缺,所以为了满足更多ip需要,出现了ipv6协议:6个冒号分割的16进制数表示,这个应该是将来的趋势,但是ipv4还是用的最多的,因为我们一般一个公司就一个对外的IP地址,我们所有的机器上网都走这一个IP出口。

关于ip地址和mac地址

每个以太网设备在出厂时都有一个唯一的MAC地址,为什么还需要为每台主机再分配一个IP地址?每台主机都分配唯一的IP地址,为什么还要在网络设备(如网卡,集线器,路由器等)生产时内嵌一个唯一的MAC地址呢?

唯一的MAC地址

    MAC(Media Access Control或者Medium Access Control)地址,意译为媒体访问控制,或称为物理地址、硬件地址,用来定义网络设备的位置。在OSI模型中,第三层网络层负责 IP地址,第二层数据链路层则负责 MAC地址。因此一个主机会有一个MAC地址,而每个网络位置会有一个专属于它的IP地址。 MAC地址是网卡决定的,是固定的。

    MAC地址,长度是48比特(6字节),由16进制的数字组成,分为前24位和后24位:

    前24位叫做组织唯一标志符(Organizationally Unique Identifier,即    OUI),是由IEEE的注册管理机构给不同厂家分配的代码,区分了不同的厂家。

    后24位是由厂家自己分配的,称为扩展标识符。同一个厂家生产的网卡中MAC地址后24位是不同的。

    每个以太网设备在出厂时都有一个唯一的MAC地址。

一个局域网内唯一的IP地址

    IP地址是指互联网协议地址(英语:Internet Protocol Address,又译为网际协议地址),是IP Address的缩写。IP地址是IP协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。

    IP地址被用来给Internet上的电脑一个编号。日常见到的情况是每台联网的PC上都需要有IP地址,才能正常通信。

    我们可以把“个人电脑”比作“一台电话”,那么“IP地址”就相当于“电话号码”,而Internet中的路由器,就相当于电信局的“程控式交换机”。

    IP地址是一个32位的二进制数,通常被分割为4个“8位二进制数”(也就是4个字节)。IP地址通常用“点分十进制”表示成(a.b.c.d)的形式,其中,a,b,c,d都是0~255之间的十进制整数。例:点分十进IP地址(100.4.5.6),实际上是32位二进制数(01100100.00000100.00000101.00000110)。

每台主机都分配唯一的IP地址,为什么还要一个唯一的MAC地址呢

    建立osi七层模型的主要目的是为解决异种网络互连时所遇到的兼容性问题。它的最大优点是将服务、接口和协议这三个概念明确地区分开来:服务说明某一层为上一层提供一些什么功能,接口说明上一层如何使用下层的服务,而协议涉及如何实现本层的服务;这样各层之间具有很强的独立性,互连网络中各实体采用什么样的协议是没有限制的,只要向上提供相同的服务并且不改变相邻层的接口就可以了。网络七层的划分也是为了使网络的不同功能模块(不同层次)分担起不同的职责,从而带来如下好处:

    减轻问题的复杂程度,一旦网络发生故障,可迅速定位故障所处层次,便于查找和纠错;在各层分别定义标准接口,使具备相同对等层的不同网络设备能实现互操作,各层之间则相对独立,一种高层协议可放在多种低层协议上运行;能有效刺激网络技术革新,因为每次更新都可以在小范围内进行,不需对整个网络动大手术。

从上可知:

    MAC用于第二层传输,IP用于第三层传输。分为两层,用两个地址,一个原因就是为了兼容性,能让异构网互联,即让两个不同架构之间的网络也能通信,传输过程中Mac会变,IP不变。

    IP地址的作用很重要的一部分就是屏蔽底下链路层的差异,因为它是一个逻辑地址,所以可以适应于多种链路;以太网这种链路层组网方式中,要通过mac地址来通信,其实ip协议完全可以运行于串口(通常运行slip或ppp等链路层协议)等其他形式的链路之上,这时并不需要一个mac地址;在局域网中两台电脑之间传输数据包用MAC地址即可识别,而通过路由器访问互联网 ,传输数据包中的MAC地址就转成路由器的MAC地址。此时就要靠IP来识别,当我要换了一台路由器时候,只要我的IP地址不变,要跟我们传输数据的对象只要记住IP地址即可与我们通信而不需记住我们的mac地址。

IP地址和mac地址

关于ip地址和mac地址

  ip地址分成两部分

  • 网络部分:标识子网
  • 主机部分:标识主机

  注意:单纯的ip地址段只是标识了ip地址的种类,从网络部分或主机部分都无法辨识一个ip所处的子网

  例:172.16.10.1与172.16.10.2并不能确定二者处于同一子网

IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

 ip数据包

  ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分

  head:长度为20到60字节

  data:最长为65,515字节。

  而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

以太网头                ip 头                                     ip数据                                

  协议工作方式:每台主机ip都是已知的(我只知道我的局域网ip地址,要给一个非同一网络的我不知道ip地址的电脑发消息,怎么办:NET穿透)

  例如:主机172.16.10.10/24访问172.16.10.11/24

  一:首先通过ip地址和子网掩码区分出自己所处的子网

场景 数据包地址
同一子网 目标主机mac,目标主机ip
不同子网 网关mac,目标主机ip

  二:分析172.16.10.10/24与172.16.10.11/24处于同一网络(如果不是同一网络,那么下表中目标ip为172.16.10.1,通过arp获取的是网关的mac)

  源mac 目标mac 源ip 目标ip 数据部分
发送端主机 发送端mac FF:FF:FF:FF:FF:FF 172.16.10.10/24 172.16.10.11/24 数据

  三:这个包会以广播的方式在发送端所处的子网内传输,所有主机接收后拆开包,发现目标ip为自己的,就响应,返回自己的mac

-----------------------------------------------------------------------------------------------------------

@@传输层

传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机吗,但是只找到主机有用吗,是不是程序之间进行的沟通啊像QQ、浏览器和京东服务器,然后大家使用的都是应用程序,你的电脑上可能同时开启qq,暴风影音,等多个应用程序,

    那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序,答案就是端口,端口即应用程序与网卡关联的编号。

    传输层功能:建立端口到端口的通信(端对端通信)

    补充:端口范围0-65535,0-1023为系统占用端口

tcp协议:(TCP把连接作为最基本的对象,每一条TCP连接都有两个端点,这种端点我们叫作套接字(socket),它的定义为端口号拼接到IP地址即构成了套接字,例如,若IP地址为192.3.4.16 而端口号为80,那么得到的套接字为192.3.4.16:80。)

  当应用程序希望通过 TCP 与另一个应用程序通信时,它会发送一个通信请求。这个请求必须被送到一个确切的地址。在双方“握手”之后,TCP 将在两个应用程序之间建立一个全双工 (full-duplex,双方都可以收发消息) 的通信。

  这个全双工的通信将占用两个计算机之间的通信线路,直到它被一方或双方关闭为止。

  它是可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

以太网头 ip 头               tcp头               数据                                                    

  udp协议:不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

以太网头 ip头                      udp头                            数据                                           
tcp协议:(TCP把连接作为最基本的对象,每一条TCP连接都有两个端点,这种端点我们叫作套接字(socket),它的定义为端口号拼接到IP地址即构成了套接字,例如,若IP地址为192.3.4.16 而端口号为80,那么得到的套接字为192.3.4.16:80。)

  当应用程序希望通过 TCP 与另一个应用程序通信时,它会发送一个通信请求。这个请求必须被送到一个确切的地址。在双方“握手”之后,TCP 将在两个应用程序之间建立一个全双工 (full-duplex,双方都可以收发消息) 的通信。

  这个全双工的通信将占用两个计算机之间的通信线路,直到它被一方或双方关闭为止。

  它是可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

以太网头    ip 头                  tcp头                  数据                                                    

  udp协议:不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

以太网头    ip头                         udp头                               数据      

tcp协议

 tcp三次握手和四次挥手

    我们知道网络层,可以实现两个主机之间的通信。但是这并不具体,因为,真正进行通信的实体是在主机中的进程,是一个主机中的一个进程与另外一个主机中的一个进程在交换数据。IP协议虽然能把数据报文送到目的主机,但是并没有交付给主机的具体应用进程。而端到端的通信才应该是应用进程之间的通信。

    UDP,在传送数据前不需要先建立连接,远地的主机在收到UDP报文后也不需要给出任何确认。虽然UDP不提供可靠交付,但是正是因为这样,省去和很多的开销,使得它的速度比较快,比如一些对实时性要求较高的服务,就常常使用的是UDP。对应的应用层的协议主要有 DNS,TFTP,DHCP,SNMP,NFS 等。

    TCP,提供面向连接的服务,在传送数据之前必须先建立连接,数据传送完成后要释放连接。因此TCP是一种可靠的的运输服务,但是正因为这样,不可避免的增加了许多的开销,比如确认,流量控制等。对应的应用层的协议主要有 SMTP,TELNET,HTTP,FTP 等。

常用的端口号:

应用程序 FTP TFTP TELNET SMTP DNS HTTP SSH MYSQL
熟知端口 21,20 69 23 25 53 80 22 3306
传输层协议 TCP UDP TCP TCP UDP TCP  

  三次握手:

TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态;
TCP客户进程也是先创建传输控制块TCB,然后向服务器发出连接请求报文,这是报文首部中的同部位SYN=,同时选择一个初始序列号 seq=x ,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。
TCP服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=,SYN=,确认号是ack=x+,同时也要为自己初始化一个序列号 seq=y,此时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。
TCP客户进程收到确认后,还要向服务器给出确认。确认报文的ACK=,ack=y+,自己的序列号seq=x+,此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。TCP规定,ACK报文段可以携带数据,但是如果不携带数据则不消耗序号。
当服务器收到客户端的确认后也进入ESTABLISHED状态,此后双方就可以开始通信了。

tcp三次握手

  为什么TCP客户端最后还要发送一次确认呢?

一句话,主要防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。

如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,只是因为在网络结点中滞留的时间太长了,由于TCP的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。

如果采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。

原因

原因

 四次挥手:

数据传输完毕后,双方都可释放连接。最开始的时候,客户端和服务器都是处于ESTABLISHED状态,然后客户端主动关闭,服务器被动关闭。服务端也可以主动关闭,一个流程。

客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。
客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。
服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

四次挥手

 为什么客户端最后还要等待2MSL?

MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。
而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

原因

 如果已经建立了连接,但是客户端突然出现故障了怎么办?

    TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75分钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

三次握手:
TCP是因特网中的传输层协议,使用三次握手协议建立连接。当主动方发出SYN连接请求后,等待对方回答SYN+ACK[1],并最终对对方的 SYN 执行 ACK 确认。这种建立连接的方法可以防止产生错误的连接。[1]
TCP三次握手的过程如下:
客户端发送SYN(SEQ=x)报文给服务器端,进入SYN_SEND状态。
服务器端收到SYN报文,回应一个SYN (SEQ=y)ACK(ACK=x+1)报文,进入SYN_RECV状态。
客户端收到服务器端的SYN报文,回应一个ACK(ACK=y+1)报文,进入Established状态。
三次握手完成,TCP客户端和服务器端成功地建立连接,可以开始传输数据了。 四次挥手:
建立一个连接需要三次握手,而终止一个连接要经过四次握手,这是由TCP的半关闭(half-close)造成的。
(1) 某个应用进程首先调用close,称该端执行“主动关闭”(active close)。该端的TCP于是发送一个FIN分节,表示数据发送完毕。
(2) 接收到这个FIN的对端执行 “被动关闭”(passive close),这个FIN由TCP确认。
注意:FIN的接收也作为一个文件结束符(end-of-file)传递给接收端应用进程,放在已排队等候该应用进程接收的任何其他数据之后,因为,FIN的接收意味着接收端应用进程在相应连接上再无额外数据可接收。
(3) 一段时间后,接收到这个文件结束符的应用进程将调用close关闭它的套接字。这导致它的TCP也发送一个FIN。
(4) 接收这个最终FIN的原发送端TCP(即执行主动关闭的那一端)确认这个FIN。[1]
既然每个方向都需要一个FIN和一个ACK,因此通常需要4个分节。
注意:
(1) “通常”是指,某些情况下,步骤1的FIN随数据一起发送,另外,步骤2和步骤3发送的分节都出自执行被动关闭那一端,有可能被合并成一个分节。[2]
(2) 在步骤2与步骤3之间,从执行被动关闭一端到执行主动关闭一端流动数据是可能的,这称为“半关闭”(half-close)。
(3) 当一个Unix进程无论自愿地(调用exit或从main函数返回)还是非自愿地(收到一个终止本进程的信号)终止时,所有打开的描述符都被关闭,这也导致仍然打开的任何TCP连接上也发出一个FIN。
无论是客户还是服务器,任何一端都可以执行主动关闭。通常情况是,客户执行主动关闭,但是某些协议,例如,HTTP/1.0却由服务器执行主动关闭。[2] 为什么是四次挥手,是因为TCP建立的是全双工通道,你和我断了,我还是可以给你发消息的,所以你断了之后,也需要我进行断开链接,所以要进行四次挥手确认。 为什么三次握手但是四次挥手

为什么是三次握手四次挥手

-----------------------------------------------------------------------------------------------------

二.socket的认知:

先看一下socket在内的五层协议

    Socket又称为套接字,它是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。当我们使用不同的协议进行通信时就得使用不同的接口,还得处理不同协议的各种细节,这就增加了开发的难度,软件也不易于扩展(就像我们开发一套公司管理系统一样,报账、会议预定、请假等功能不需要单独写系统,而是一个系统上多个功能接口,不需要知道每个功能如何去实现的)。于是UNIX BSD就发明了socket这种东西,socket屏蔽了各个协议的通信细节,使得程序员无需关注协议本身,直接使用socket提供的接口来进行互联的不同主机间的进程的通信。这就好比操作系统给我们提供了使用底层硬件功能的系统调用,通过系统调用我们可以方便的使用磁盘(文件操作),使用内存,而无需自己去进行磁盘读写,内存管理。socket其实也是一样的东西,就是提供了tcp/ip协议的抽象,对外提供了一套接口,同过这个接口就可以统一、方便的使用tcp/ip协议的功能了。

其实站在你的角度上看,socket就是一个模块。我们通过调用模块中已经实现的方法建立两个进程之间的连接和通信。也有人将socket说成ip+port,因为ip是用来标识互联网中的一台主机的位置,而port是用来标识这台机器上的一个应用程序。 所以我们只要确立了ip和port就能找到一个应用程序,并且使用socket模块来与之通信。

-----------------------------------------------------------------------------------------------------------------------------

socket的发展和分类

套接字起源于 20 世纪 70 年代加利福尼亚大学伯克利分校版本的 Unix,即人们所说的 BSD Unix。 因此,有时人们也把套接字称为“伯克利套接字”或“BSD 套接字”。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通讯。这也被称进程间通讯,或 IPC。套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我们只使用AF_INET)

八 基于TCP和UDP两个协议下socket的通讯流程

socket分类

--------------------------------------------------------------------------------------------------

三.基于 tcp/udp 两个协议下的通讯流程

1.关于 tcp/udp 的区别

  TCP(Transmission Control Protocol)可靠的、面向连接的协议(eg:打电话)、传输效率低全双工通信(发送缓存&接收缓存)、面向字节流。使用TCP的应用:Web浏览器;文件传输程序。

  UDP(User Datagram Protocol)不可靠的、无连接的服务,传输效率高(发送前时延小),一对一、一对多、多对一、多对多、面向报文(数据包),尽最大努力服务,无拥塞控制。使用UDP的应用:域名系统 (DNS);视频流;IP语音(VoIP)。

直接看图对比其中差异

继续往下看

TCP和UDP下socket差异对比图:

上面的图只是让大家感受一下TCP和UDP协议下,socket工作流程的不同,两者之间的差异是tcp需要连接,udp不需要,有些同学是不是有些迷糊,老师,这里面的bind、listen啥的都是什么东西啊,我感觉人生是迷茫的!calm down!下面我们就分开两者,细细学习!

-------------------------------------------------------------------------------------------------------------------

2.tcp协议下socket

来吧!先上图!

基于TCP的socket通讯流程图片

    虽然上图将通讯流程中的大致描述了一下socket各个方法的作用,但是还是要总结一下通讯流程(下面一段内容)

先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束

    上代码感受一下,需要创建两个文件,文件名称随便起,为了方便看,我的两个文件名称为tcp_server.py(服务端)和tcp_client.py(客户端),将下面的server端的代码拷贝到tcp_server.py文件中,将下面client端的代码拷贝到tcp_client.py的文件中,然后先运行tcp_server.py文件中的代码,再运行tcp_client.py文件中的代码,然后在pycharm下面的输出窗口看一下效果。

server端代码示例(如果比喻成打电话)

服务端

服务

import socket
sk = socket.socket()
sk.bind(('127.0.0.1',8898)) #把地址绑定到套接字
sk.listen() #监听链接
conn,addr = sk.accept() #接受客户端链接
ret = conn.recv(1024) #接收客户端信息
print(ret) #打印客户端信息
conn.send(b'hi') #向客户端发送信息
conn.close() #关闭客户端套接字
sk.close() #关闭服务器套接字(可选) tcp_server.py

客户端

import socket
sk = socket.socket() # 创建客户套接字
sk.connect(('127.0.0.1',8898)) # 尝试连接服务器
sk.send(b'hello!')
ret = sk.recv(1024) # 对话(发送/接收)
print(ret)
sk.close() # 关闭客户套接字 tcp_client.py

客户端

socket绑定IP和端口时可能出现下面的问题:

解决办法:

#加入一条socket配置,重用ip和端口
import socket
from socket import SOL_SOCKET,SO_REUSEADDR
sk = socket.socket()
sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #在bind前加,允许地址重用
sk.bind(('127.0.0.1',8898)) #把地址绑定到套接字
sk.listen() #监听链接
conn,addr = sk.accept() #接受客户端链接
ret = conn.recv(1024) #接收客户端信息
print(ret) #打印客户端信息
conn.send(b'hi') #向客户端发送信息
conn.close() #关闭客户端套接字
sk.close() #关闭服务器套接字(可选) 解决办法

解决办法

  但是如果你加上了上面的代码之后还是出现这个问题:OSError: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试。那么只能换端口了,因为你的电脑不支持端口重用。

    记住一点,用socket进行通信,必须是一收一发对应好。

  提一下:网络相关或者需要和电脑上其他程序通信的程序才需要开一个端口。

  

  在看UDP协议下的socket之前,我们还需要加一些内容来讲:看代码

    server端

import socket
from socket import SOL_SOCKET,SO_REUSEADDR
sk = socket.socket()
# sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
sk.bind(('127.0.0.1',8090))
sk.listen()
conn,addr = sk.accept() #在这阻塞,等待客户端过来连接
while True:
ret = conn.recv(1024) #接收消息 在这还是要阻塞,等待收消息
ret = ret.decode('utf-8') #字节类型转换为字符串中文
print(ret)
if ret == 'bye': #如果接到的消息为bye,退出
break
msg = input('服务端>>') #服务端发消息
conn.send(msg.encode('utf-8'))
if msg == 'bye':
break conn.close()
sk.close() 只能与第一个客户端通信server端代码

只能与第一个客户端通讯

client端

import socket
sk = socket.socket()
sk.connect(('127.0.0.1',8090)) #连接服务端 while True:
msg = input('客户端>>>') #input阻塞,等待输入内容
sk.send(msg.encode('utf-8'))
if msg == 'bye':
break
ret = sk.recv(1024)
ret = ret.decode('utf-8')
print(ret)
if ret == 'bye':
break
sk.close() 只能与第一个客户端通信client端代码

只能与第一个服务端通讯

  你会发现,第一个连接的客户端可以和服务端收发消息,但是第二个连接的客户端发消息服务端是收不到的

  原因解释:
    tcp属于长连接,长连接就是一直占用着这个链接,这个连接的端口被占用了,第二个客户端过来连接的时候,他是可以连接的,但是处于一个占线的状态,就只能等着去跟服务端建立连接,除非一个客户端断开了(优雅的断开可以,如果是强制断开就会报错,因为服务端的程序还在第一个循环里面),然后就可以进行和服务端的通信了。什么是优雅的断开呢?看代码。
  server端代码:
import socket
from socket import SOL_SOCKET,SO_REUSEADDR
sk = socket.socket()
# sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #允许地址重用,这个东西都说能解决问题,我非常不建议大家这么做,容易出问题
sk.bind(('127.0.0.1',8090))
sk.listen()
# 第二步演示,再加一层while循环
while True: #下面的代码全部缩进进去,也就是循环建立连接,但是不管怎么聊,只能和一个聊,也就是另外一个优雅的断了之后才能和另外一个聊
#它不能同时和好多人聊,还是长连接的原因,一直占用着这个端口的连接,udp是可以的,然后我们学习udp
conn,addr = sk.accept() #在这阻塞,等待客户端过来连接
while True:
ret = conn.recv(1024) #接收消息 在这还是要阻塞,等待收消息
ret = ret.decode('utf-8') #字节类型转换为字符串中文
print(ret)
if ret == 'bye': #如果接到的消息为bye,退出
break
msg = input('服务端>>') #服务端发消息
conn.send(msg.encode('utf-8'))
if msg == 'bye':
break
conn.close() 优雅的断开一个client端之后另一个client端就可以通信的代码

优雅断开后可以与另一个客户端连接

    client端代码

import socket
sk = socket.socket()
sk.connect(('127.0.0.1',8090)) #连接服务端 while True:
msg = input('客户端>>>') #input阻塞,等待输入内容
sk.send(msg.encode('utf-8'))
if msg == 'bye':
break
ret = sk.recv(1024)
ret = ret.decode('utf-8')
print(ret)
if ret == 'bye':
break
# sk.close() client端代码

-----------------------------------------------------------------------------------------------

3.udp协议下的socket

总结一下UDP下的socket通讯流程

  先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),recvform接收消息,这个消息有两项,消息内容和对方客户端的地址,然后回复消息时也要带着你收到的这个客户端的地址,发送回去,最后关闭连接,一次交互结束

上代码感受一下,需要创建两个文件,文件名称随便起,为了方便看,我的两个文件名称为udp_server.py(服务端)和udp_client.py(客户端),将下面的server端的代码拷贝到udp_server.py文件中,将下面cliet端的代码拷贝到udp_client.py的文件中,然后先运行udp_server.py文件中的代码,再运行udp_client.py文件中的代码,然后在pycharm下面的输出窗口看一下效果。

  server端代码示例

import socket
udp_sk = socket.socket(type=socket.SOCK_DGRAM) #创建一个服务器的套接字
udp_sk.bind(('127.0.0.1',9000)) #绑定服务器套接字
msg,addr = udp_sk.recvfrom(1024)
print(msg)
udp_sk.sendto(b'hi',addr) # 对话(接收与发送)
udp_sk.close() # 关闭服务器套接字 udp_server.py

udp server

  client端代码示例

import socket
ip_port=('127.0.0.1',9000)
udp_sk=socket.socket(type=socket.SOCK_DGRAM)
udp_sk.sendto(b'hello',ip_port)
back_msg,addr=udp_sk.recvfrom(1024)
print(back_msg.decode('utf-8'),addr) udp_client.py

udp client

类似于qq聊天的代码示例:

  服务端

#_*_coding:utf-8_*_
import socket
ip_port=('127.0.0.1',8081)
udp_server_sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #DGRAM:datagram 数据报文的意思,象征着UDP协议的通信方式
udp_server_sock.bind(ip_port)#你对外提供服务的端口就是这一个,所有的客户端都是通过这个端口和你进行通信的 while True:
qq_msg,addr=udp_server_sock.recvfrom(1024)# 阻塞状态,等待接收消息
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],qq_msg.decode('utf-8')))
back_msg=input('回复消息: ').strip() udp_server_sock.sendto(back_msg.encode('utf-8'),addr) server端

server

  客户端

#_*_coding:utf-8_*_
import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={
'taibai':('127.0.0.1',8081),
'Jedan':('127.0.0.1',8081),
'Jack':('127.0.0.1',8081),
'John':('127.0.0.1',8081),
} while True:
qq_name=input('请选择聊天对象: ').strip()
while True:
msg=input('请输入消息,回车发送,输入q结束和他的聊天: ').strip()
if msg == 'q':break
if not msg or not qq_name or qq_name not in qq_name_dic:continue
udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name])# 必须带着自己的地址,这就是UDP不一样的地方,不需要建立连接,但是要带着自己的地址给服务端,否则服务端无法判断是谁给我发的消息,并且不知道该把消息回复到什么地方,因为我们之间没有建立连接通道 back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)# 同样也是阻塞状态,等待接收消息
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close() client端

客户端

接下来,给大家说一个真实的例子,也就是实际当中应用的,那么这是个什么例子呢?就是我们电脑系统上的时间,windows系统的时间是和微软的时间服务器上的时间同步的,而mac本是和苹果服务商的时间服务器同步的,这是怎么做的呢,首先他们的时间服务器上的时间是和国家同步的,你们用我的系统,那么你们的时间只要和我时间服务器上的时间同步就行了,对吧,我时间服务器是不是提供服务的啊,相当于一个服务端,我们的电脑就相当于客户端,就是通过UDP来搞的。

我们自制一个时间服务器的代码示例:

  服务端

from socket import *
from time import strftime
import time
ip_port = ('127.0.0.1', 9000)
bufsize = 1024 tcp_server = socket(AF_INET, SOCK_DGRAM)
tcp_server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
tcp_server.bind(ip_port) while True:
msg, addr = tcp_server.recvfrom(bufsize)
print('===>', msg)
stru_time = time.localtime() #当前的结构化时间
if not msg:
time_fmt = '%Y-%m-%d %X'
else:
time_fmt = msg.decode('utf-8')
back_msg = strftime(time_fmt,stru_time)
print(back_msg,type(back_msg))
tcp_server.sendto(back_msg.encode('utf-8'), addr) tcp_server.close() server端

  客户端

from socket import *
ip_port=('127.0.0.1',9000)
bufsize=1024 tcp_client=socket(AF_INET,SOCK_DGRAM) while True:
msg=input('请输入时间格式(例%Y %m %d)>>: ').strip()
tcp_client.sendto(msg.encode('utf-8'),ip_port) data=tcp_client.recv(bufsize)
print('当前日期:',str(data,encoding='utf-8')) client端

day26 网络通讯的整个流程的更多相关文章

  1. DIOCP网络通讯流程

    DIOCP 运作核心探密   原文连接: http://blog.qdac.cc/?p=2362 原作者: BB 天地弦的DIOCP早已经广为人知了,有很多的同学都用上了它,甚至各种变异.修改版本也出 ...

  2. Windows 网络通讯开发

    Windows 网络通讯开发 一.Windows网络开发API 由于C++标准库中没有网络库,所以进行网络开发的时候要调用系统API.Windows通讯开发API包括以下几个基本函数及成员类型: 1. ...

  3. 文档:网络通讯包结构(crc校验,加解密)

    一直想把这个流程整理一下. 包结构: 包 对(datacrc+protoID+dataSize)组成的byte[] 进行crc计算而得到 对(数据内容)进行crc计算而得到 协议号 数据内容的字节长度 ...

  4. Web开发,浏览器通讯原理及流程那点事,你应该听说下

    题外话: 最近园子里,关于.net门槛的文章风风火火,不过这类事情每过段时间就会出来一次,所以酱油都懒的打了. 当然个人也是有想法的,特别是这两天碰巧和一个三四年经验的java开发者呆在一起,对方说. ...

  5. C#.NET通过Socket实现平行主机之间网络通讯(含图片传输的Demo演示)

    在程序设计中,涉及数据存储和数据交换的时候,不管是B/S还是C/S模式,都有这样一个概念:数据库服务器.这要求一台性能和配置都比较好的主机作为服务器,以满足数目众多的客户端进行频繁访问.但是对于一些数 ...

  6. 抓包工具 Fiddler 使用:弱网络环境模拟限速测试流程

    转自:http://www.51testing.com/html/80/n-3726980.html   抓包工具 Fiddler 使用:弱网络环境模拟限速测试流程 发表于:2018-6-06 11: ...

  7. QT5 网络通讯

    QT5 TCP网络通讯 服务器与客户端建立连接listen() - connectToHost();  触发newPendingConnect信号 实时数据通讯write(); read();  触发 ...

  8. 网络编程介绍,C/S 架构,网络通讯协议,osi七层

    网络编程: 什么是网络编程: 网络通常指的是计算机中的互联网,是由多台计算机通过网线或其他媒介相互链接组成的 编写基于网络的应用程序的过程序称之为网络编程 为什么要学习网络编程: 我们已经知道计算机, ...

  9. dicom网络通讯入门(3)

    接下来可以进行消息传递了 ,也就是dimse ,再来复习下 什么是dimse .n-set  n-create c-echo 这些都是dimse  他们都是属于一种结构的pdu 那就是tf-pdu(传 ...

随机推荐

  1. 基本的数据类型 void关键字 都存在类类型

  2. Docker的Gitlab镜像的使用

    Gitlab是一款非常强大的开源源码管理系统.它支持基于Git的源码管理.代码评审.issue跟踪.活动管理.wiki页面,持续集成和测试等功能.基于Gitlab,用户可以自己搭建一套类似Github ...

  3. render tree与css解析

    浏览器在构造DOM树的同时也在构造着另一棵树-Render Tree,与DOM树相对应暂且叫它Render树吧,我们知道DOM树为javascript提供了一些列的访问接口(DOM API),但这棵树 ...

  4. python http认证

    Requests 库有一个auth 模块专门用来处理HTTP 认证: import requestsfrom requests.auth import AuthBasefrom requests.au ...

  5. auth 权限控制

    一. 权限介绍所谓权限控制,大部分是在管理后台上使用.比如超级管理员登录,会得到所有操作的控制权:认证专员,只能给会员做认证操作:审核专员,只能操作内容的审核.删除.加精等操作,以此类推.那么 Thi ...

  6. UTF8转unicode说明

    1.最新版iconv中的char *encTo = "UNICODE//IGNORE"; 是没有这个字符串的,它里面有UNICODELITTLE 和 UNICODEBIG 而且是没 ...

  7. Python 黑客 --- 002 入门级 ZIP压缩文件口令暴力破解机

    Python 黑客 入门级实战:ZIP压缩文件口令暴力破解机 使用的系统:Ubuntu 14.04 LTS Python语言版本:Python 2.7.10 V 编写zip 压缩文件口令破解器需要使用 ...

  8. 2用java代码实现冒泡排序算法(转载)

    import java.util.Scanner; public class Maopao { public static void main(String[] args) { System.out. ...

  9. p2421 荒岛野人

    传送门 题目 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走 ...

  10. svn冲突问题详解 SVN版本冲突解决详解

    svn冲突问题详解 SVN版本冲突解决详解 (摘自西西软件园,原文链接http://www.cr173.com/html/46224_1.html) 解决版本冲突的命令.在冲突解决之后,需要使用svn ...