python 特征选择 绘图 + mine
demo代码:
# _*_coding:UTF-8_*_
import numpy as np
import sys
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
import sys
from sklearn import preprocessing
from sklearn.ensemble import ExtraTreesClassifier
import os
from minepy import MINE def iterbrowse(path):
for home, dirs, files in os.walk(path):
for filename in files:
yield os.path.join(home, filename) def get_data(filename):
white_verify = []
with open(filename) as f:
lines = f.readlines()
data = {}
for line in lines:
a = line.split("\t")
if len(a) != 78:
print(line)
raise Exception("fuck")
white_verify.append([float(n) for n in a[3:]])
return white_verify if __name__ == '__main__':
# pdb.set_trace()
neg_file = "cc_data/black_all.txt"
pos_file = "cc_data/white_all.txt"
X = []
y = []
if os.path.isfile(pos_file):
if pos_file.endswith('.txt'):
pos_set = np.genfromtxt(pos_file)
elif pos_file.endswith('.npy'):
pos_set = np.load(pos_file)
X.extend(pos_set)
y += [0] * len(pos_set)
if os.path.isfile(neg_file):
if neg_file.endswith('.txt'):
neg_set = np.genfromtxt(neg_file)
elif neg_file.endswith('.npy'):
neg_set = np.load(neg_file) '''
X.extend(list(neg_set) * 5)
y += [1] * (5 * len(neg_set))
'''
X.extend(neg_set)
y += [1] * len(neg_set) print("len of X:", len(X))
print("X sample:", X[:3])
print("len of y:", len(y))
print("y sample:", y[:3])
X = [x[3:] for x in X]
print("filtered X sample:", X[:3]) cols = [str(i + 6) for i in range(len(X[0]))]
clf = ExtraTreesClassifier()
clf.fit(X, y)
print (clf.feature_importances_)
print "Features sorted by their score:"
print sorted(zip(clf.feature_importances_, cols), reverse=True) black_verify = []
for f in iterbrowse("todo/top"):
print(f)
black_verify += get_data(f)
# ValueError: operands could not be broadcast together with shapes (1,74) (75,) (1,74)
print(black_verify)
black_verify_labels = [3] * len(black_verify) white_verify = get_data("todo/white_verify.txt")
print(white_verify)
white_verify_labels = [2] * len(white_verify) unknown_verify = get_data("todo/pek_feature74.txt")
print(unknown_verify) # extend data
X = np.concatenate((X, black_verify))
y += black_verify_labels
X = np.concatenate((X, white_verify))
y += white_verify_labels #################################### plot ####################################
data_train = pd.DataFrame(X)
# cols = [str(i) for i in range(6, 81)]
data_train.columns = cols # add label column
# data_train = data_train.assign(label=pd.Series(y))
data_train["label"] = pd.Series(y) print(data_train.info())
print(data_train.columns) import matplotlib.pyplot as plt for col in cols:
fig = plt.figure(figsize=(20, 16), dpi=8)
fig.set(alpha=0.2)
plt.figure()
data_train[data_train.label == 0.0][col].plot()
data_train[data_train.label == 1.0][col].plot()
data_train[data_train.label == 2.0][col].plot()
data_train[data_train.label == 3.0][col].plot()
plt.xlabel(u"sample data id")
plt.ylabel(u"value")
plt.title(col)
plt.legend((u'white', u'black', u"white-todo", u"black-todo"), loc='best')
plt.show() print "calculate MINE mic value:"
for col in cols:
print col,
mine = MINE(alpha=0.6, c=15,
est="mic_approx") # http://minepy.readthedocs.io/en/latest/python.html#second-example
mine.compute_score(data_train[col], y)
print "MIC=", mine.mic() sys.exit(-1)
extend data 表示待预测的数据
关于mic:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from minepy import MINE rs = np.random.RandomState(seed=0) def mysubplot(x, y, numRows, numCols, plotNum,
xlim=(-4, 4), ylim=(-4, 4)): r = np.around(np.corrcoef(x, y)[0, 1], 1)
mine = MINE(alpha=0.6, c=15, est="mic_approx")
mine.compute_score(x, y)
mic = np.around(mine.mic(), 1)
ax = plt.subplot(numRows, numCols, plotNum,
xlim=xlim, ylim=ylim)
ax.set_title('Pearson r=%.1f\nMIC=%.1f' % (r, mic),fontsize=10)
ax.set_frame_on(False)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.plot(x, y, ',')
ax.set_xticks([])
ax.set_yticks([])
return ax def rotation(xy, t):
return np.dot(xy, [[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]]) def mvnormal(n=1000):
cors = [1.0, 0.8, 0.4, 0.0, -0.4, -0.8, -1.0]
for i, cor in enumerate(cors):
cov = [[1, cor],[cor, 1]]
xy = rs.multivariate_normal([0, 0], cov, n)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, i+1) def rotnormal(n=1000):
ts = [0, np.pi/12, np.pi/6, np.pi/4, np.pi/2-np.pi/6,
np.pi/2-np.pi/12, np.pi/2]
cov = [[1, 1],[1, 1]]
xy = rs.multivariate_normal([0, 0], cov, n)
for i, t in enumerate(ts):
xy_r = rotation(xy, t)
mysubplot(xy_r[:, 0], xy_r[:, 1], 3, 7, i+8) def others(n=1000):
x = rs.uniform(-1, 1, n)
y = 4*(x**2-0.5)**2 + rs.uniform(-1, 1, n)/3
mysubplot(x, y, 3, 7, 15, (-1, 1), (-1/3, 1+1/3)) y = rs.uniform(-1, 1, n)
xy = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1)), axis=1)
xy = rotation(xy, -np.pi/8)
lim = np.sqrt(2+np.sqrt(2)) / np.sqrt(2)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 16, (-lim, lim), (-lim, lim)) xy = rotation(xy, -np.pi/8)
lim = np.sqrt(2)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 17, (-lim, lim), (-lim, lim)) y = 2*x**2 + rs.uniform(-1, 1, n)
mysubplot(x, y, 3, 7, 18, (-1, 1), (-1, 3)) y = (x**2 + rs.uniform(0, 0.5, n)) * \
np.array([-1, 1])[rs.random_integers(0, 1, size=n)]
mysubplot(x, y, 3, 7, 19, (-1.5, 1.5), (-1.5, 1.5)) y = np.cos(x * np.pi) + rs.uniform(0, 1/8, n)
x = np.sin(x * np.pi) + rs.uniform(0, 1/8, n)
mysubplot(x, y, 3, 7, 20, (-1.5, 1.5), (-1.5, 1.5)) xy1 = np.random.multivariate_normal([3, 3], [[1, 0], [0, 1]], int(n/4))
xy2 = np.random.multivariate_normal([-3, 3], [[1, 0], [0, 1]], int(n/4))
xy3 = np.random.multivariate_normal([-3, -3], [[1, 0], [0, 1]], int(n/4))
xy4 = np.random.multivariate_normal([3, -3], [[1, 0], [0, 1]], int(n/4))
xy = np.concatenate((xy1, xy2, xy3, xy4), axis=0)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 21, (-7, 7), (-7, 7)) plt.figure(facecolor='white')
mvnormal(n=800)
rotnormal(n=200)
others(n=800)
plt.tight_layout()
plt.show()
python 特征选择 绘图 + mine的更多相关文章
- python常用绘图软件包记录
在没有使用python之前,觉得matlab的绘图功能还算可以~但现在发现python的绘图包真的好强大,绘制出的图像非常专业漂亮,但具体使用还有待学习,这里记录学习过程中遇到的python绘图包,以 ...
- Python之绘图和可视化
Python之绘图和可视化 1. 启用matplotlib 最常用的Pylab模式的IPython(IPython --pylab) 2. matplotlib的图像都位于Figure对象中. 可以使 ...
- 10分钟轻松学会python turtle绘图
 1. 画布(canvas) 1.1 相关函数: 2. 画笔 2.1 画笔的状态 2.2 画笔的属性 2.3 绘图命令 3. 命令详解 4. 绘图举例 4.1 太阳花 4.2 绘制小蟒蛇 4.3 绘 ...
- python matplotlib 绘图基础
在利用Python做数据分析时,探索数据以及结果展现上图表的应用是不可或缺的. 在Python中通常情况下都是用matplotlib模块进行图表制作. 先理下,matplotlib的结构原理: mat ...
- 10分钟轻松学会 Python turtle 绘图
python2.6版本中后引入的一个简单的绘图工具,叫做海龟绘图(Turtle Graphics),turtle库是python的内部库,使用导入即可 import turtle 先说明一下turtl ...
- Python函数绘图
最近看数学,发现有时候画个图还真管用,对理解和展示效果都不错.尤其是三维空间和一些复杂函数,相当直观,也有助于解题.本来想用mathlab,下载安装都太费事,杀鸡不用牛刀,Python基本就能实现.下 ...
- 【Matplotlib】利用Python进行绘图
[Matplotlib] 教程:https://morvanzhou.github.io/tutorials/data-manipulation/plt/ 官方文档:https://matplotli ...
- python海龟绘图
最近学了python,看了几本书之后,才明白python的强大,python是一种解释型的语言,即每写一行程序就执行一行. 而且在科学计算方面,处理的能力特别的方便. 比如python中的字典dict ...
- 【震惊】手把手教你用python做绘图工具(一)
在这篇博客里将为你介绍如何通过numpy和cv2进行结和去创建画布,包括空白画布.白色画布和彩色画布.创建画布是制作绘图工具的前提,有了画布我们就可以在画布上尽情的挥洒自己的艺术细胞. 还在为如何去绘 ...
随机推荐
- redhat安装中文man手册
1.下载中文man手册 http://download.chinaunix.net/download.php?id=13232&ResourceID=6537 2.上传至服务器并解压 tar ...
- xshell 连接腾讯服务器
1.先关机, 创建秘钥,再绑定主机,下载秘钥保存下来 2. 填写好主机好和端口 3 4.导入刚才下载的文件 记住用户名是ubuntu 不是root!!
- 嵌入式驱动开发之sensor---"VIP0 PortA", "VIP0 PortB", "VIP1 PortA", "VIP1 PortB",dvo0(vout1) dvo1(vout0)
(1)vip 简介 (2)vip 电路图 (3)vip 更换采集相机输入 (4)vip 驱动 ---------------------author:pkf --------------------- ...
- volatile的含义及使用场景
volatile保证线程间的数据是可见的(共享的),但不保证数据同步 volatile相当于synchronized的弱实现,也就是说volatile实现了类似synchronized的语义,却又没有 ...
- jquery基础研究学习【HTML】
jQuery HTMLjQuery 捕获jQuery 设置jQuery 添加元素jQuery 删除元素jQuery CSS 类jQuery css() 方法jQuery 尺寸 笔记:
- 安装Hadoop 1.1.2 (一 安装JDK)
1 下载jdk1.7 xxx .rpm 2 以Root权限登陆 3 修改文件权限 chmod +x jdk-7u25-linux-x64.rpm 4 安装 JDK rpm -ivh jdk-7u2 ...
- P1009 阶乘之和
P1009 阶乘之和 题目提供者洛谷OnlineJudge 标签数论(数学相关)高精1998NOIp提高组NOIp普及组 难度普及- 通过/提交1139/3791 提交该题 讨论 题解 记录 题目描述 ...
- Just a Hook(线段树)
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- 记录-Maven下载jar包失败解决办法
maven从nexsu上面拉jar包,有时会因为网络问题导致下不了包,这时候文件夹内会个*lastUpdated.properties的文件,而这文件的存在会导致下次服务器不会去下载这个包,这时候要删 ...
- Vue学习-基础语法
Vue v-if指令 Vue.js的指令是以v-开头的,它们作用于HTML元素,指令提供了一些特殊的特性,将指令绑定在元素上时,指令会为绑定的目标元素添加一些特殊的行为,我们可以将指令看作特殊的HTM ...