python 特征选择 绘图 + mine
demo代码:
# _*_coding:UTF-8_*_
import numpy as np
import sys
import pandas as pd
from pandas import Series,DataFrame
import numpy as np
import sys
from sklearn import preprocessing
from sklearn.ensemble import ExtraTreesClassifier
import os
from minepy import MINE def iterbrowse(path):
for home, dirs, files in os.walk(path):
for filename in files:
yield os.path.join(home, filename) def get_data(filename):
white_verify = []
with open(filename) as f:
lines = f.readlines()
data = {}
for line in lines:
a = line.split("\t")
if len(a) != 78:
print(line)
raise Exception("fuck")
white_verify.append([float(n) for n in a[3:]])
return white_verify if __name__ == '__main__':
# pdb.set_trace()
neg_file = "cc_data/black_all.txt"
pos_file = "cc_data/white_all.txt"
X = []
y = []
if os.path.isfile(pos_file):
if pos_file.endswith('.txt'):
pos_set = np.genfromtxt(pos_file)
elif pos_file.endswith('.npy'):
pos_set = np.load(pos_file)
X.extend(pos_set)
y += [0] * len(pos_set)
if os.path.isfile(neg_file):
if neg_file.endswith('.txt'):
neg_set = np.genfromtxt(neg_file)
elif neg_file.endswith('.npy'):
neg_set = np.load(neg_file) '''
X.extend(list(neg_set) * 5)
y += [1] * (5 * len(neg_set))
'''
X.extend(neg_set)
y += [1] * len(neg_set) print("len of X:", len(X))
print("X sample:", X[:3])
print("len of y:", len(y))
print("y sample:", y[:3])
X = [x[3:] for x in X]
print("filtered X sample:", X[:3]) cols = [str(i + 6) for i in range(len(X[0]))]
clf = ExtraTreesClassifier()
clf.fit(X, y)
print (clf.feature_importances_)
print "Features sorted by their score:"
print sorted(zip(clf.feature_importances_, cols), reverse=True) black_verify = []
for f in iterbrowse("todo/top"):
print(f)
black_verify += get_data(f)
# ValueError: operands could not be broadcast together with shapes (1,74) (75,) (1,74)
print(black_verify)
black_verify_labels = [3] * len(black_verify) white_verify = get_data("todo/white_verify.txt")
print(white_verify)
white_verify_labels = [2] * len(white_verify) unknown_verify = get_data("todo/pek_feature74.txt")
print(unknown_verify) # extend data
X = np.concatenate((X, black_verify))
y += black_verify_labels
X = np.concatenate((X, white_verify))
y += white_verify_labels #################################### plot ####################################
data_train = pd.DataFrame(X)
# cols = [str(i) for i in range(6, 81)]
data_train.columns = cols # add label column
# data_train = data_train.assign(label=pd.Series(y))
data_train["label"] = pd.Series(y) print(data_train.info())
print(data_train.columns) import matplotlib.pyplot as plt for col in cols:
fig = plt.figure(figsize=(20, 16), dpi=8)
fig.set(alpha=0.2)
plt.figure()
data_train[data_train.label == 0.0][col].plot()
data_train[data_train.label == 1.0][col].plot()
data_train[data_train.label == 2.0][col].plot()
data_train[data_train.label == 3.0][col].plot()
plt.xlabel(u"sample data id")
plt.ylabel(u"value")
plt.title(col)
plt.legend((u'white', u'black', u"white-todo", u"black-todo"), loc='best')
plt.show() print "calculate MINE mic value:"
for col in cols:
print col,
mine = MINE(alpha=0.6, c=15,
est="mic_approx") # http://minepy.readthedocs.io/en/latest/python.html#second-example
mine.compute_score(data_train[col], y)
print "MIC=", mine.mic() sys.exit(-1)
extend data 表示待预测的数据
关于mic:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from minepy import MINE rs = np.random.RandomState(seed=0) def mysubplot(x, y, numRows, numCols, plotNum,
xlim=(-4, 4), ylim=(-4, 4)): r = np.around(np.corrcoef(x, y)[0, 1], 1)
mine = MINE(alpha=0.6, c=15, est="mic_approx")
mine.compute_score(x, y)
mic = np.around(mine.mic(), 1)
ax = plt.subplot(numRows, numCols, plotNum,
xlim=xlim, ylim=ylim)
ax.set_title('Pearson r=%.1f\nMIC=%.1f' % (r, mic),fontsize=10)
ax.set_frame_on(False)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.plot(x, y, ',')
ax.set_xticks([])
ax.set_yticks([])
return ax def rotation(xy, t):
return np.dot(xy, [[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]]) def mvnormal(n=1000):
cors = [1.0, 0.8, 0.4, 0.0, -0.4, -0.8, -1.0]
for i, cor in enumerate(cors):
cov = [[1, cor],[cor, 1]]
xy = rs.multivariate_normal([0, 0], cov, n)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, i+1) def rotnormal(n=1000):
ts = [0, np.pi/12, np.pi/6, np.pi/4, np.pi/2-np.pi/6,
np.pi/2-np.pi/12, np.pi/2]
cov = [[1, 1],[1, 1]]
xy = rs.multivariate_normal([0, 0], cov, n)
for i, t in enumerate(ts):
xy_r = rotation(xy, t)
mysubplot(xy_r[:, 0], xy_r[:, 1], 3, 7, i+8) def others(n=1000):
x = rs.uniform(-1, 1, n)
y = 4*(x**2-0.5)**2 + rs.uniform(-1, 1, n)/3
mysubplot(x, y, 3, 7, 15, (-1, 1), (-1/3, 1+1/3)) y = rs.uniform(-1, 1, n)
xy = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1)), axis=1)
xy = rotation(xy, -np.pi/8)
lim = np.sqrt(2+np.sqrt(2)) / np.sqrt(2)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 16, (-lim, lim), (-lim, lim)) xy = rotation(xy, -np.pi/8)
lim = np.sqrt(2)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 17, (-lim, lim), (-lim, lim)) y = 2*x**2 + rs.uniform(-1, 1, n)
mysubplot(x, y, 3, 7, 18, (-1, 1), (-1, 3)) y = (x**2 + rs.uniform(0, 0.5, n)) * \
np.array([-1, 1])[rs.random_integers(0, 1, size=n)]
mysubplot(x, y, 3, 7, 19, (-1.5, 1.5), (-1.5, 1.5)) y = np.cos(x * np.pi) + rs.uniform(0, 1/8, n)
x = np.sin(x * np.pi) + rs.uniform(0, 1/8, n)
mysubplot(x, y, 3, 7, 20, (-1.5, 1.5), (-1.5, 1.5)) xy1 = np.random.multivariate_normal([3, 3], [[1, 0], [0, 1]], int(n/4))
xy2 = np.random.multivariate_normal([-3, 3], [[1, 0], [0, 1]], int(n/4))
xy3 = np.random.multivariate_normal([-3, -3], [[1, 0], [0, 1]], int(n/4))
xy4 = np.random.multivariate_normal([3, -3], [[1, 0], [0, 1]], int(n/4))
xy = np.concatenate((xy1, xy2, xy3, xy4), axis=0)
mysubplot(xy[:, 0], xy[:, 1], 3, 7, 21, (-7, 7), (-7, 7)) plt.figure(facecolor='white')
mvnormal(n=800)
rotnormal(n=200)
others(n=800)
plt.tight_layout()
plt.show()
python 特征选择 绘图 + mine的更多相关文章
- python常用绘图软件包记录
在没有使用python之前,觉得matlab的绘图功能还算可以~但现在发现python的绘图包真的好强大,绘制出的图像非常专业漂亮,但具体使用还有待学习,这里记录学习过程中遇到的python绘图包,以 ...
- Python之绘图和可视化
Python之绘图和可视化 1. 启用matplotlib 最常用的Pylab模式的IPython(IPython --pylab) 2. matplotlib的图像都位于Figure对象中. 可以使 ...
- 10分钟轻松学会python turtle绘图
 1. 画布(canvas) 1.1 相关函数: 2. 画笔 2.1 画笔的状态 2.2 画笔的属性 2.3 绘图命令 3. 命令详解 4. 绘图举例 4.1 太阳花 4.2 绘制小蟒蛇 4.3 绘 ...
- python matplotlib 绘图基础
在利用Python做数据分析时,探索数据以及结果展现上图表的应用是不可或缺的. 在Python中通常情况下都是用matplotlib模块进行图表制作. 先理下,matplotlib的结构原理: mat ...
- 10分钟轻松学会 Python turtle 绘图
python2.6版本中后引入的一个简单的绘图工具,叫做海龟绘图(Turtle Graphics),turtle库是python的内部库,使用导入即可 import turtle 先说明一下turtl ...
- Python函数绘图
最近看数学,发现有时候画个图还真管用,对理解和展示效果都不错.尤其是三维空间和一些复杂函数,相当直观,也有助于解题.本来想用mathlab,下载安装都太费事,杀鸡不用牛刀,Python基本就能实现.下 ...
- 【Matplotlib】利用Python进行绘图
[Matplotlib] 教程:https://morvanzhou.github.io/tutorials/data-manipulation/plt/ 官方文档:https://matplotli ...
- python海龟绘图
最近学了python,看了几本书之后,才明白python的强大,python是一种解释型的语言,即每写一行程序就执行一行. 而且在科学计算方面,处理的能力特别的方便. 比如python中的字典dict ...
- 【震惊】手把手教你用python做绘图工具(一)
在这篇博客里将为你介绍如何通过numpy和cv2进行结和去创建画布,包括空白画布.白色画布和彩色画布.创建画布是制作绘图工具的前提,有了画布我们就可以在画布上尽情的挥洒自己的艺术细胞. 还在为如何去绘 ...
随机推荐
- NPTL LinuxThreads
Linux 线程模型的比较:LinuxThreads 和 NPTL 进行移植的开发人员需要了解的关键区别摘要 Vikram Shukla 2006 年 8 月 28 日发布 WeiboGoogle+用 ...
- 【ubantu】Ubuntu的一些常用命令
创建文件: touch a.txt 创建文件夹: mkdir NewFolder 删除文件: rm a.txt 删除文件夹: rmdir NewFolder 删除带有文件的文件夹: rm -rf Ne ...
- easyui combobox 三级级联 input 两种实现
/**<img src='${pageContext.request.contextPath}/images/block.png'/> * @param 默认载入 省市 */ $(func ...
- nignx部署django
操作系统:Linux wiki 2.6.32-131.0.15.el6.x86_64 nginx版本: nginx-1.5.7 uwsgi版本:uwsgi-2.0.8 大致流程参考:http://ww ...
- volley全然解析
一.volley是什么? 1.简单介绍 Volley是Goole在2013年Google I/O大会上推出了一个新的网络通信框架,它是开源的.从名字由来和配图中无数急促的火箭能够看出 Volley ...
- React Native安装步骤
先贴出中文网安装指南:http://reactnative.cn/docs/0.46/getting-started.html 本文会点出一些安装时遇到的坑,和解决方案! 1.首先是安装Chocola ...
- Cassandra数据库Java訪问
针对的时Cassandra 2.0 数据库 Java本地client訪问Cassandra,首先建立Javaproject,使用Maven进行管理. 引入依赖: <dependency> ...
- Cocos2d-x中使用第三方so库
项目中假设使用到第三方的SDK,大多数是以.so动态共享库的文件打包给我们使用.怎样使用他们,见以下分析. 1.获得库文件 假如我们得到的库文件是libxxx.so(注:关于.so文件的命名方式,可百 ...
- Myeclipse 文件注释和解注释
我用的是myeclipse10.6, 在xml中 注释可以用: ctrl+shift+/ (段落注释) ctrl+shift+c (行注释) 解除注释可以用: ctrl+shift+\ 在proper ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元
[BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...