Luogu的spj现在挂了,要去其他OJ提交。

2-SAT

发现如果不考虑$x$的情况,这就成为一个2-SAT的裸题了,我们有$O(n + m)$的方法可以解决它。

那加上$x$的情况怎么弄……岂不是变成一个3-SAT。

滑稽吧,3-SAT已经被证明是一个完全NPC问题了……

再观察一下数据范围发现为$x$的点最多只有$8$个,那么我们思考一下(看一下题解)就会发现$x$的点取$a$或者$b$的情况其实就可以遍历到所有可行解了,所以直接取枚举这个$2^{d}$,然后$O(n + m)$地去检验它,时间复杂度$O(2^{d}(n + m))$。

连边方法(假设当前的条件是$x, c1, y, c2$):

1、如果第$x$场不能使用$x$,那么直接$continue$,这个条件显然没有影响。

2、如果第$x$场能使用$x$,第$y$场不能使用$y$,那么直接把$(x, true)$连向$(x, false)$,代表如果选了$(x, true)$就无解。

3、如果第$x$场可以使用$x$,第$y$场也可以使用$y$,那么按照套路连成一个对偶图,把$(x, true)$向$(y, true)$连边,同时把$(y, false)$向$(x, false)$连边。

关于$(x, true)$和$(x, false)$的记法,可以自己yy一下,要把$(x, true)$记为$x$, $(x, false)$记为$x + n$, 最后输出的时候对应回来就好。

Code:

#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; const int N = 2e5 + ; int n, m, K, pos[], tot, head[N];
int dfsc, dfn[N], low[N], top, sta[N], scc, bel[N];
char str[N];
bool vis[N]; struct Eedge {
int to, nxt;
} e[N << ]; inline void add(int from, int to) {
e[++tot].to = to;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} struct Restrain {
char c1, c2;
int x, y; inline void readIn() {
c1 = c2 = ;
read(x); for(c1 = getchar(); c1 != 'A' && c1 != 'B' && c1 != 'C'; c1 = getchar());
read(y); for(c2 = getchar(); c2 != 'A' && c2 != 'B' && c2 != 'C'; c2 = getchar());
} } a[N]; inline int id(int now, char c) {
if(str[now] == 'a') return c == 'C' ? now : now + n;
if(str[now] == 'b') return c == 'A' ? now : now + n;
if(str[now] == 'c') return c == 'B' ? now : now + n;
return ;
} inline int opp(int nowId) {
return nowId > n ? nowId - n : nowId + n;
} inline int min(int x, int y) {
return x > y ? y : x;
} void tarjan(int x) {
dfn[x] = low[x] = ++dfsc;
vis[x] = , sta[++top] = x;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
} else if(vis[y]) low[x] = min(low[x], dfn[y]);
} if(low[x] == dfn[x]) {
++scc;
for(; sta[top + ] != x; --top) {
vis[sta[top]] = ;
bel[sta[top]] = scc;
}
}
} inline bool solve() {
dfsc = tot = top = scc = ;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(bel, , sizeof(bel));
memset(head, , sizeof(head)); for(int i = ; i <= m; i++) {
if(a[i].c1 + == str[a[i].x]) continue;
if(a[i].c1 == a[i].c2 && a[i].x == a[i].y) continue;
int p1 = id(a[i].x, a[i].c1), p2 = opp(p1);
int p3 = id(a[i].y, a[i].c2), p4 = opp(p3);
if(a[i].c2 + == str[a[i].y]) {
add(p1, p2);
continue;
}
add(p1, p3), add(p4, p2);
} for(int i = ; i <= * n; i++)
if(!dfn[i]) tarjan(i); for(int i = ; i <= n; i++)
if(bel[i] == bel[i + n]) return ; return ;
} inline void print() {
for(int i = ; i <= n; i++) {
if(bel[i] < bel[i + n]) {
if(str[i] == 'a') putchar('C');
if(str[i] == 'b') putchar('A');
if(str[i] == 'c') putchar('B');
} else {
if(str[i] == 'a') putchar('B');
if(str[i] == 'b') putchar('C');
if(str[i] == 'c') putchar('A');
}
}
exit();
} int main() {
read(n), read(K); scanf("%s", str + );
K = ;
for(int i = ; i <= n; i++)
if(str[i] == 'x') pos[++K] = i; /* for(int i = 1; i <= K; i++)
printf("%d ", pos[i]);
printf("\n"); */ read(m);
for(int i = ; i <= m; i++) a[i].readIn(); /* for(int i = 1; i <= m; i++)
printf("%d %c %d %c\n", a[i].x, a[i].c1, a[i].y, a[i].c2); */ for(int S = ; S < ( << K); S++) {
for(int i = ; i < K; i++)
if((S >> i) & ) str[pos[i + ]] = 'a';
else str[pos[i + ]] = 'b'; bool flag = solve();
if(flag) print();
} puts("-1");
return ;
}

Luogu 3825 [NOI2017]游戏的更多相关文章

  1. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

  2. 洛谷3825 [NOI2017]游戏 2-sat

    原文链接http://www.cnblogs.com/zhouzhendong/p/8146041.html 题目传送门 - 洛谷3825 题解 我们考虑到地图中x的个数很少,最多只有8个. 所以我们 ...

  3. Luogu P3825 [NOI2017]游戏

    这道题看上去NPC啊,超级不可做的样子. 我们先分析一下简单的情形:没有\(x\)地图 此时每个地图由于限制掉一种汽车,那么显然只会有两种选择. 再考虑到限制的情况,那么大致做法就很显然了--2-SA ...

  4. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  5. 【BZOJ4945】[Noi2017]游戏 2-SAT

    [BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...

  6. [luogu]P1070 道路游戏[DP]

    [luogu]P1070 道路游戏 题目描述小新正在玩一个简单的电脑游戏.游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针 ...

  7. BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...

  8. bzoj3825 NOI2017 游戏

    题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地 ...

  9. [NOI2017]游戏(2-SAT)

    这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x ...

随机推荐

  1. BootStrap实现左侧或右侧竖式tab选项卡

    BootStrap实现左侧或右侧竖式tab选项卡 代码如下: <div style="height: 100px;"> <div class="col- ...

  2. import from 'xxx'是如何找到node_modules目录下的

    起初我认为这是ES6或者Webpack的语法,但查阅相关API后并没有相关说明,通过进一步地搜索,才知道这是Node模块系统的约定和实现(Webpack打包工具是兼容node模块系统的,自然遵守相关规 ...

  3. hadoop 学习笔记:mapreduce框架详解(转)

    原文:http://www.cnblogs.com/sharpxiajun/p/3151395.html(有删减) Mapreduce运行机制 下面我贴出几张图,这些图都是我在百度图片里找到的比较好的 ...

  4. runtime 实现方法交换 viewwillappear方法

    1.新建分类 #import "UIViewController+swizzling.h"#import <objc/runtime.h> @implementatio ...

  5. Nginx初步配置

    编辑 简介 Nginx ("engine x") 是一个轻量级,高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由Igor Sysoev为 ...

  6. Nginix安装教程(Ubuntu)

    安装gcc g++的依赖库 #apt-get install build-essential #apt-get install libtool   安装 pcre依赖库 #sudo apt-get u ...

  7. Java -- 容器使用 Set, List, Map, Queue, Collections

    1. ArrayList ArrayList<String> c = new ArrayList<String>(); c.add("hello"); c. ...

  8. Delphi操作XML - 冰雪傲骨

    Delphi操作XMl,只要使用 NativeXml.我是用的版本是4..NativeXML的使用方法比较简单,但是功能很强大. XE2的话,要在simdesign.inc后面加上: // Delph ...

  9. Java集合类--->入门下篇

    HashSet集合 在上篇大概了解了什么是集合类,知道它可以存储任意类型的对象,并且比数组灵活,集合类的长度可以变化.这里将接着介绍一下,Set接口的实现类之一,HashSet集合,Set集合:元素不 ...

  10. Java集合类--->入门上篇

    最近我又在研究Java语言,这是第五次还是第六次学习Java的集合类,你也许会惊讶为什么这么多次?哈哈,因为之前的我没有记录下来,忘记了,当然最主要还是觉得自己毅力不够,没有坚持.那么,这次我将换一种 ...