题目地址:http://poj.org/problem?id=3006

刷了好多水题,来找回状态......

Dirichlet's Theorem on Arithmetic Progressions
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16803   Accepted: 8474

Description

If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing by d, i.e., a, a + d, a + 2d, a + 3d, a + 4d, ..., contains infinitely many prime numbers. This fact is known as Dirichlet's Theorem on Arithmetic Progressions, which had been conjectured by Johann Carl Friedrich Gauss (1777 - 1855) and was proved by Johann Peter Gustav Lejeune Dirichlet (1805 - 1859) in 1837.

For example, the arithmetic sequence beginning with 2 and increasing by 3, i.e.,

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, ... ,

contains infinitely many prime numbers

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, ... .

Your mission, should you decide to accept it, is to write a program to find the nth prime number in this arithmetic sequence for given positive integers a, d, and n.

Input

The input is a sequence of datasets. A dataset is a line containing three positive integers a, d, and n separated by a space. a and d are relatively prime. You may assume a <= 9307, d <= 346, and n <= 210.

The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

Output

The output should be composed of as many lines as the number of the input datasets. Each line should contain a single integer and should never contain extra characters.

The output integer corresponding to a dataset a, d, n should be the nth prime number among those contained in the arithmetic sequence beginning with a and increasing by d.

FYI, it is known that the result is always less than 106 (one million) under this input condition.

Sample Input

367 186 151
179 10 203
271 37 39
103 230 1
27 104 185
253 50 85
1 1 1
9075 337 210
307 24 79
331 221 177
259 170 40
269 58 102
0 0 0

Sample Output

92809
6709
12037
103
93523
14503
2
899429
5107
412717
22699
25673 题目分析:每组输入a, b, n; a和b构成一个等差数列。a是首项,b是公差。求在a和b形成的等差数列中,第n个素数是什么?
算法:素数打表一下,注意范围要打大一点,才能够保证找到n个素数而不会越界。
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <algorithm>
#define eps 1e-8 using namespace std; int f[1000010]; void sushu()
{
memset(f, 0, sizeof(f));
f[0]=1; f[1]=1;
int i=2;
while(i<=1100)
{
for(int j=i+i; j<=1000000; j+=i){
f[j]=1; //不是素数
}
i++;
while(f[i]==1)
i++;
}
} int main()
{
int a, b, n;
int i, j;
sushu(); while(scanf("%d %d %d", &a, &b, &n)!=EOF)
{
if(a==0 && b==0 && n==0) break;
for(i=a; ; i+=b)
{
if(f[i]==0 ) n--;
if(n==0) break;
}
printf("%d\n", i);
}
return 0;
}
												

poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】的更多相关文章

  1. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions 素数 难度:0

    http://poj.org/problem?id=3006 #include <cstdio> using namespace std; bool pm[1000002]; bool u ...

  3. poj 3006 Dirichlet's Theorem on Arithmetic Progressions

    题目大意:a和d是两个互质的数,则序列a,a+d,a+2d,a+3d,a+4d ...... a+nd 中有无穷多个素数,给出a和d,找出序列中的第n个素数 #include <cstdio&g ...

  4. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. Dirichlet's Theorem on Arithmetic Progressions POJ - 3006 线性欧拉筛

    题意 给出a d n    给出数列 a,a+d,a+2d,a+3d......a+kd 问第n个数是几 保证答案不溢出 直接线性筛模拟即可 #include<cstdio> #inclu ...

  6. Dirichlet's Theorem on Arithmetic Progressions

    http://poj.org/problem?id=3006 #include<stdio.h> #include<math.h> int is_prime(int n) { ...

  7. 【POJ3006】Dirichlet's Theorem on Arithmetic Progressions(素数筛法)

    简单的暴力筛法就可. #include <iostream> #include <cstring> #include <cmath> #include <cc ...

  8. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

  9. Dirichlet's Theorem on Arithmetic Progression

    poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. ...

随机推荐

  1. 闪屏(Splash)

    好久没弄ReactNative了, 写个怎样实现闪屏(Splash)的文章吧. 注意: (1) 怎样切换页面. (2) 怎样使用计时器TimerMixin. (3) 怎样使用动画效果. (4) 怎样载 ...

  2. nginx 做前端代理时proxy参数配置

    1.后台可登录: proxy_connect_timeout 300s; proxy_send_timeout ; proxy_read_timeout ; proxy_buffer_size 256 ...

  3. 0x00 使用Ant 设置项目

    1. Ant 简介: Ant 是一款广泛使用的流行的开源构建工具,它用Java语言编写. 2.Ant官网: Ant官网:http://ant.apache.org/ 3.设置环境变量: 新建 Vari ...

  4. FILE 创建

    public class CreateDelFileUtils implements Serializable{ /** * */ private static final long serialVe ...

  5. C和C++格式转换

    一.引用参数和指针的转换 标准C不支持引用参数,对此需进行转换.下面以bo1-1.cpp和bo1-1.c中DestroyTriplet()函数为例来说明这种转换. bo1-1.cpp中含有引用参数的函 ...

  6. 从零开始学android -- notification通知

    目前有三种通知 第一种是普通通知 看看效果 布局什么的太简单了我就不放在上面了给你们看核心的代码就行了 里面的   int notificationID = 1; //设置点击通知后的意图 Inten ...

  7. CSMA/CD解释与理解

    1. CSMA/CD含义 CSMA/CD即载波监听多点接入/碰撞检测,此协议是使用在总线型网络中的,不同计算机是通过多点接入的方式连接在一起.协议的重点在于监听和碰撞检测. 2. 为什么要监听和碰撞检 ...

  8. 文件大小转换(b,kb,M,GB/TB)

    //转换单位 setupSize(1111111111111); function setupSize($fileSize) { $size = sprintf("%u", $fi ...

  9. Unity中surfaceShader的处理机制和finalColor

    http://blog.csdn.net/swj524152416/article/details/52945375

  10. Lumen开发:lumen源码解读之初始化(4)——服务提供(ServiceProviders)与路由(Routes)

    版权声明:本文为博主原创文章,未经博主允许不得转载. 前面讲了singleton和Middleware,现在来继续讲ServiceProviders和Routes,还是看起始文件bootstrap/a ...