前言

之前文章 《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch 写了如何将 Kafka 中的数据存储到 ElasticSearch 中,里面其实就已经用到了 Flink 自带的 Kafka source connector(FlinkKafkaConsumer)。存入到 ES 只是其中一种情况,那么如果我们有多个地方需要这份通过 Flink 转换后的数据,是不是又要我们继续写个 sink 的插件呢?确实,所以 Flink 里面就默认支持了不少 sink,比如也支持 Kafka sink connector(FlinkKafkaProducer),那么这篇文章我们就讲讲如何将数据写入到 Kafka。

准备

添加依赖

Flink 里面支持 Kafka 0.8、0.9、0.10、0.11 ,以后有时间可以分析下源码的实现。

这里我们需要安装下 Kafka,请对应添加对应的 Flink Kafka connector 依赖的版本,这里我们使用的是 0.11 版本:

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>${flink.version}</version>
</dependency>

Kafka 安装

这里就不写这块内容了,可以参考我以前的文章 Kafka 安装及快速入门

这里我们演示把其他 Kafka 集群中 topic 数据原样写入到自己本地起的 Kafka 中去。

配置文件

kafka.brokers=xxx:9092,xxx:9092,xxx:9092
kafka.group.id=metrics-group-test
kafka.zookeeper.connect=xxx:2181
metrics.topic=xxx
stream.parallelism=5
kafka.sink.brokers=localhost:9092
kafka.sink.topic=metric-test
stream.checkpoint.interval=1000
stream.checkpoint.enable=false
stream.sink.parallelism=5

目前我们先看下本地 Kafka 是否有这个 metric-test topic 呢?需要执行下这个命令:

bin/kafka-topics.sh --list --zookeeper localhost:2181

可以看到本地的 Kafka 是没有任何 topic 的,如果等下我们的程序运行起来后,再次执行这个命令出现 metric-test topic,那么证明我的程序确实起作用了,已经将其他集群的 Kafka 数据写入到本地 Kafka 了。

程序代码

Main.java

public class Main {
public static void main(String[] args) throws Exception{
final ParameterTool parameterTool = ExecutionEnvUtil.createParameterTool(args);
StreamExecutionEnvironment env = ExecutionEnvUtil.prepare(parameterTool);
DataStreamSource<Metrics> data = KafkaConfigUtil.buildSource(env); data.addSink(new FlinkKafkaProducer011<Metrics>(
parameterTool.get("kafka.sink.brokers"),
parameterTool.get("kafka.sink.topic"),
new MetricSchema()
)).name("flink-connectors-kafka")
.setParallelism(parameterTool.getInt("stream.sink.parallelism")); env.execute("flink learning connectors kafka");
}
}

运行结果

启动程序,查看运行结果,不段执行上面命令,查看是否有新的 topic 出来:

执行命令可以查看该 topic 的信息:

bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic metric-test

分析

上面代码我们使用 Flink Kafka Producer 只传了三个参数:brokerList、topicId、serializationSchema(序列化)

其实也可以传入多个参数进去,现在有的参数用的是默认参数,因为这个内容比较多,后面可以抽出一篇文章单独来讲。

总结

本篇文章写了 Flink 读取其他 Kafka 集群的数据,然后写入到本地的 Kafka 上。我在 Flink 这层没做什么数据转换,只是原样的将数据转发了下,如果你们有什么其他的需求,是可以在 Flink 这层将数据进行各种转换操作,比如这篇文章中的一些转换:《从0到1学习Flink》—— Flink Data transformation(转换),然后将转换后的数据发到 Kafka 上去。

本文原创地址是: http://www.54tianzhisheng.cn/2019/01/06/Flink-Kafka-sink/ , 未经允许禁止转载。

关注我

微信公众号:zhisheng

另外我自己整理了些 Flink 的学习资料,目前已经全部放到微信公众号了。你可以加我的微信:zhisheng_tian,然后回复关键字:Flink 即可无条件获取到。

Github 代码仓库

https://github.com/zhisheng17/flink-learning/

以后这个项目的所有代码都将放在这个仓库里,包含了自己学习 flink 的一些 demo 和博客

相关文章

1、《从0到1学习Flink》—— Apache Flink 介绍

2、《从0到1学习Flink》—— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门

3、《从0到1学习Flink》—— Flink 配置文件详解

4、《从0到1学习Flink》—— Data Source 介绍

5、《从0到1学习Flink》—— 如何自定义 Data Source ?

6、《从0到1学习Flink》—— Data Sink 介绍

7、《从0到1学习Flink》—— 如何自定义 Data Sink ?

8、《从0到1学习Flink》—— Flink Data transformation(转换)

9、《从0到1学习Flink》—— 介绍Flink中的Stream Windows

10、《从0到1学习Flink》—— Flink 中的几种 Time 详解

11、《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch

12、《从0到1学习Flink》—— Flink 项目如何运行?

13、《从0到1学习Flink》—— Flink 写入数据到 Kafka

《从0到1学习Flink》—— Flink 写入数据到 Kafka的更多相关文章

  1. Flink 之 写入数据到 ElasticSearch

    前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>—— Data Source 介绍 2.<从0到1学习F ...

  2. 《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch

    前言 前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector. 1.<从0到1学习Flink>-- Data Source 介绍 2.<从0到1 ...

  3. 《从0到1学习Flink》—— Flink 项目如何运行?

    前言 之前写了不少 Flink 文章了,也有不少 demo,但是文章写的时候都是在本地直接运行 Main 类的 main 方法,其实 Flink 是支持在 UI 上上传 Flink Job 的 jar ...

  4. 《从0到1学习Flink》—— Flink 中几种 Time 详解

    前言 Flink 在流程序中支持不同的 Time 概念,就比如有 Processing Time.Event Time 和 Ingestion Time. 下面我们一起来看看这几个 Time: Pro ...

  5. 《从0到1学习Flink》—— 介绍Flink中的Stream Windows

    前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowin ...

  6. 《从0到1学习Flink》—— Flink Data transformation(转换)

    前言 在第一篇介绍 Flink 的文章 <<从0到1学习Flink>-- Apache Flink 介绍> 中就说过 Flink 程序的结构 Flink 应用程序结构就是如上图 ...

  7. Flink 从0到1学习—— Flink 不可以连续 Split(分流)?

    前言 今天上午被 Flink 的一个算子困惑了下,具体问题是什么呢? 我有这么个需求:有不同种类型的告警数据流(包含恢复数据),然后我要将这些数据流做一个拆分,拆分后的话,每种告警里面的数据又想将告警 ...

  8. Flink 从0到1学习 —— Flink 中如何管理配置?

    前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一 ...

  9. Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文

    前言 之前也分享了不少自己的文章,但是对于 Flink 来说,还是有不少新入门的朋友,这里给大家分享点 Flink 相关的资料(国外数据 pdf 和流处理相关的 Paper),期望可以帮你更好的理解 ...

随机推荐

  1. 测试-Swagger:目录

    ylbtech-测试-Swagger:目录 1.返回顶部 1. https://swagger.io/ 2.Swagger Editor http://swagger.io/swagger-edito ...

  2. Velocity下面的Velocimacros设置

    Velocimacros #macro script element允许模板设计者定义一段可重用的VTL template.Velocimacros广泛用于简单和复杂的行列.Velocimacros的 ...

  3. mybatis---demo1--(1-n)----bai

    实体类1: package com.etc.entity; import java.util.List; public class Teacher { private int tid; private ...

  4. Centos 7安装与配置chef

    背景:随着DevOps 逐渐流行起来,越来越多的工作需要自动化处理,而chef就是其中一款能实现自动化管理的工具,掌握类似chef这样的自动化工具,相信会使你在未来的竞争中更具优势. 俗话说“好记性不 ...

  5. 关于UI性能优化

    1.使用已经有的VIEW,而不是每次都去新生成一个 2.创建自定义类来进行组件和数据的缓存,在下一次调用的时候直接从FLAG中取出 3.分页,预加载 使用VIEWSTUB进行调用时加载 VIEWSTU ...

  6. javaScript笔记01

    所谓勇气就是明知前方的路途充满了荆棘险阻,但还是义无反顾的的走下去. 1 Javasrcipt定义的三种方式 ·1 head中的script脚本 <!DOCTYPE html> <h ...

  7. [Gym 101334E]Exploring Pyramids(区间dp)

    题意:给定一个先序遍历序列,问符合条件的树的种类数 解题关键:枚举分割点进行dp,若符合条件一定为回文序列,可分治做,采用记忆化搜索的方法. 转移方程:$dp[i][j] = \sum {dp[i + ...

  8. Codeforces 1107G Vasya and Maximum Profit 线段树最大子段和 + 单调栈

    Codeforces 1107G 线段树最大子段和 + 单调栈 G. Vasya and Maximum Profit Description: Vasya got really tired of t ...

  9. QueryString

  10. Note: Bimodal Content Defined Chunking for Backup Streams

    CDC算法给出了一个chunk的大小的最小值.最大值.平均值的界定. Method Using chunk existence information breaking-apart algorithm ...