[codeforces934D]A Determined Cleanup
[codeforces934D]A Determined Cleanup
试题描述
In order to put away old things and welcome a fresh new year, a thorough cleaning of the house is a must.
Little Tommy finds an old polynomial and cleaned it up by taking it modulo another. But now he regrets doing this...
Given two integers \(p\) and \(k\), find a polynomial \(f(x)\) with non-negative integer coefficients strictly less than \(k\), whose remainder is \(p\) when divided by \((x + k)\). That is, \(f(x) = q(x) \cdot (x + k) + p\), where \(q(x)\) is a polynomial (not necessarily with integer coefficients).
给定两个整数 \(p\) 和 \(k\),构造一个满足下列条件的多项式 \(f(x)\):
- 每项系数严格小于 \(k\) 且非负;
- \(f(x) = g(x) \cdot (x+k) + p\),其中 \(g(x)\) 是个多项式,系数没有任何要求。
输入
The only line of input contains two space-separated integers \(p\) and \(k\) \((1 \le p \le 10^{18}, 2 \le k \le 2 000)\).
输出
If the polynomial does not exist, print a single integer \(-1\), or output two lines otherwise.
In the first line print a non-negative integer \(d\) — the number of coefficients in the polynomial.
In the second line print d space-separated integers \(a_0, a_1, \cdots , a_{d - 1}\), describing a polynomial fulfilling the given requirements. Your output should satisfy \(0 \le a_i < k\) for all \(0 \le i \le d - 1\), and \(a_{d - 1} \ne 0\).
If there are many possible solutions, print any of them.
输入示例1
46 2
输出示例1
7
0 1 0 0 1 1 1
输入示例2
2018 214
输出示例2
3
92 205 1
数据规模及约定
见“输入”
题解
我们假设 \(f(x) = \sum_{i=0}^d a_i x^i\),然后做一下 \(\frac{f(x)}{(x+k)}\) 的大除法,并将得到的 \(g(x)\) 的系数写出来(假设 \(g(x) = \sum_{i=0}^{d-1} b_i x^i\)),会发现如下规律:
b_{d-2} = a_{d-1} - k a_d \\
b_{d-3} = a_{d-2} - k a_{d-1} + k^2 a_d \\
\cdots \\
b_0 = a_1 - k a_2 + k^2 a_3 - \cdots \\
p = a_0 - k a_1 + k^2 a_2 - \cdots = \sum_{i=0}^d (-k)^i a_i
\]
于是发现 \((a_0a_1a_2 \cdots)_{-k}\) 就是 \(p\) 的 \(-k\) 进制表示,上面的过程证明了它是 \(p\) 的 \(-k\) 进制表示是满足题目要求的必要条件;由于 \(g(x)\) 没有任何约束,即 \(b_i\) 可以是任意实数,充分性也显然。
负进制的转化也是同样的过程,只不过除法要做到严格的向下取整,而不是用 C++ 中默认的朝零取整。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s), mi = (t); i <= mi; i++)
#define dwn(i, s, t) for(int i = (s), mi = (t); i >= mi; i--)
#define LL long long
LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 65
int cnt, A[maxn];
int main() {
LL p = read(), k = read();
while(p) {
LL div = p / -k;
if(-k * div > p) div++;
A[cnt++] = p - (-k * div);
p = div;
}
printf("%d\n", cnt);
rep(i, 0, cnt - 1) printf("%d%c", A[i], i < cnt - 1 ? ' ' : '\n');
return 0;
}
[codeforces934D]A Determined Cleanup的更多相关文章
- Codeforces 934D - A Determined Cleanup
934D - A Determined Cleanup 思路: 找规律,和k进制的求法差不多,答案的奇数位是p%k,偶数位如果p%k!=0,那么答案是k-p%k,否则为0. 代码: #include& ...
- Codeforces 934.D A Determined Cleanup
D. A Determined Cleanup time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces Round #462 (Div. 2) D. A Determined Cleanup
D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...
- [Codeforces 933B]A Determined Cleanup
Description 题库链接 给你两个正整数 \(p,k\) ,询问是否能够构造多项式 \(f(x)=\sum\limits_{i=0}^{d-1}a_ix^i\) ,使得存在多项式 \(q(x) ...
- Codeforces Round #464 (Div. 2) A Determined Cleanup
A. Love Triangle time limit per test1 second memory limit per test256 megabytes Problem Description ...
- Codeforces 934D/933B - A Determined Cleanup
传送门:http://codeforces.com/contest/934/problem/D 给定两个正整数p(p≥1).k(k>1).多项式f(x)的系数的取值集合为{0,1,2,...,k ...
- 【Codeforces Round #462 (Div. 1) B】A Determined Cleanup
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设\(设f(x)=a_d*x^{d}+a_{d-1}*x^{d-1}+...+a_1*x+a_0\) 用它去除x+k 用多项式除法除 ...
- codeforces 462div.2
A A Compatible Pair standard input/output 1 s, 256 MB x1916 B A Prosperous Lot standard input/out ...
- SVN:Previous operation has not finished; run 'cleanup' if it was interrupted
异常处理汇总-开发工具 http://www.cnblogs.com/dunitian/p/4522988.html cleanup failed to process the following ...
随机推荐
- jQuery选择器与事件学习笔记
层次选择器: $("div li")获取div下的所有li元素(后代.子.子的子......) $("div>li")获取div下的直接li子元素. ...
- lintcode_69_二叉树的层次遍历
二叉树的层次遍历 描述 笔记 数据 评测 给出一棵二叉树,返回其节点值的层次遍历(逐层从左往右访问) 您在真实的面试中是否遇到过这个题? Yes 哪家公司问你的这个题? LinkedIn Airb ...
- SAP 文本框实例
SAP 文本框 简单实例 REPORT ZTEST001. DATA: OK_CODE LIKE SY-UCOMM, SAVE_OK LIKE SY-UCOMM. DATA: REF_EDIT_CTN ...
- python__基础 : 类属性,类方法,静态方法
类属性 定义在类里面,方法外面的属性,一般属于这个类,如下面的 num 就是类属性: class Test: num = 类属性用 实例.类属性 或者 类.类属性 都可以访问, 如 a = Te ...
- yii2邮箱发送
yii2 邮件发送 163邮箱 1.在配置文件main-local.php components=>[]里面配置 'mailer' => [ 'class' => 'yii\swi ...
- 使用shell脚本依据分区信息分批次的下载hive表格数据
今天的业务场景大概是这样的,我想把hive表格下载到本地文件系统,然后把这个文件传送到另一个服务器上. 但是这个业务场景一个核心问题就是说我本地机器内存有限,hive表格大概是70G,我是不可能全部下 ...
- Numpy基础数据结构 python
Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数据 1.一维数组 import numpy as np ar = np.a ...
- 图像的模糊-opencv
调用两个API,一个是均值模糊,一个是高斯模糊.如下所示: #include<opencv2/opencv.hpp> #include<iostream> using name ...
- [BZOJ3631][JLOI2014]松鼠的新家(树链剖分)
[BZOJ3631] 树剖模板题了, Code #include <cstdio> #include <algorithm> #define MID int mid=(l+r) ...
- [CodeForces948B]Primal Sport(数论)
Description 题目链接 Solution 设f(x)为x的最大质因子 那么由题意易得\(X_1\)的范围在\([X_2-f(X_2)+1,X2]\) 同理\(X_0\)的范围在\([X_1- ...