[洛谷P3857][TJOI2008]彩灯
题目大意:有$n$盏灯,$m$个开关($n,m\leqslant 50$),每个开关可以控制的灯用一串$OX$串表示,$O$表示可以控制(即按一下,灯的状态改变),$X$表示不可以控制,问有多少种灯的亮暗状态
题解:线性基,线性基有一个性质,插入的数的任意一个集合的异或值都不同,所以若插入了$k$个数,答案就是$2^k$
卡点:无
C++ Code:
#include <cstdio>
#include <cctype>
int n, m;
long long p[55], x, ans = 1;
inline long long read() {
long long x;
char t = getchar();
while (isspace(t)) t = getchar();
for (x = (t == 'O'), t = getchar(); !isspace(t); t = getchar()) x = (x << 1ll) + (t == 'O');
return x;
}
int main() {
scanf("%d%d", &n, &m);
while (m --> 0) {
x = read();
for (int i = 50; ~i; i--) if (x & 1ll << i) {
if (p[i]) x ^= p[i];
else {p[i] = x; ans <<= 1ll; break;}
}
}
printf("%lld\n", ans % 2008);
return 0;
}
[洛谷P3857][TJOI2008]彩灯的更多相关文章
- 洛谷P3857 [TJOI2008]彩灯 [线性基]
题目传送门 彩灯 题目描述 Peter女朋友的生日快到了,他亲自设计了一组彩灯,想给女朋友一个惊喜.已知一组彩灯是由一排N个独立的灯泡构成的,并且有M个开关控制它们.从数学的角度看,这一排彩灯的任何一 ...
- 洛谷P3857 [TJOI2008]彩灯(线性基)
传送门 线性基裸题 直接把所有的状态都带进去建一个线性基 然后答案就是$2^{cnt}$($cnt$代表线性基里数的个数) //minamoto #include<cstdio> #inc ...
- 洛谷3857 [TJOI2008]彩灯
题目描述 已知一组彩灯是由一排N个独立的灯泡构成的,并且有M个开关控制它们.从数学的角度看,这一排彩灯的任何一个彩灯只有亮与不亮两个状态,所以共有2N个样式.由于技术上的问题,Peter设计的每个开关 ...
- 洛谷 P3857 彩灯 题解
题面 对于每一个开关,我们可以看成一个0/1串,初始是一个全部为0的串,要求经过这些开关的操作后,出现的不同的0/1串的个数 建模就是存在一些数,这些数异或起来是0(等价于没有操作).那么需要求一个集 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
随机推荐
- Java高并发之同步异步
1.概念理解: 2.同步的解决方案: 1).基于代码 synchronized 关键字 修饰普通方法:作用于当前实例加锁,进入同步代码前要获得当前实例的锁. 修饰静态方法:作用于当前类对象加锁,进入同 ...
- 使用MyEclipse/Eclipse修改项目名称报Can't convert argument: null!
报错: java.lang.IllegalArgumentException: Can't convert argument: null! 方法/步骤 报错原因:使用MyEclipse修改项目名 ...
- paramiko基本操作
paramiko 是一个用作远程控制的模块,它遵循SSH2协议,支持以加密和认证的方式来进行远程服务器的连接.操作.上传和下载. 官方文档地址:http://docs.paramiko.org/ pa ...
- 解答室内定位技术新方向:蓝牙AoA定位,值得了解 ——概念了解
转载搜狐 室内定位一直被炒的非常火的黑科技,也是近年资本追逐的热点,市场上一直有众多宣称可以做到厘米级,米级精度定位的公司,但问题很多,无法大规模商用.近些年有很多人尝试使用蓝牙beacon方式做定位 ...
- [Bzoj4818]序列计数(矩阵乘法+DP)
Description 题目链接 Solution 容斥原理,答案为忽略质数限制的方案数减去不含质数的方案数 然后矩阵乘法优化一下DP即可 Code #include <cstdio> # ...
- 14、函数之匿名函数(lambda)
关键字lambda可以创建匿名函数,语法是:lambda 参数s :表达式.匿名函数与普通函数只有以下几点不同:①没有函数名:②只能有一个表达式:③一定会有返回值,返回值就是该表达式的结果. 另外,匿 ...
- HDFS HA(High Availability)高可用性
HDFS HA(High Availability)高可用性 参考文献: 官方文档 全文翻译 Hadoop组件之-HDFS(HA实现细节) 这张图片的个人理解 由于NameNode在Hadoop1只有 ...
- android 管理Touch事件
The onInterceptTouchEvent() method gives a parent the chance to see any touch event before its child ...
- 超轻量级异步JS框架,别再让嵌套影响我们的优雅代码!
1.异步JS的重要性 随着Web平台地位的提升,霸占着浏览器的JavaScript语言也成为了世界上最流行的语言之一,甚至通过Node.js进入了服务器编程领域.JavaScript的一个重要特性便是 ...
- 牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)
链接:E.简单数据结构1 题意: 给一个长为n的序列,m次操作,每次操作: 1.区间加 2.对于区间,查询 ,一直到- 请注意每次的模数不同. 题解:扩展欧拉定理降幂 对一个数p取log(p)次的 ...