E - Domination

Time Limit:8000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu

Submit Status

Description

Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominatedby the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

"That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There are only two integers N and M (1 <= NM <= 50).

Output

For each test case, output the expectation number of days.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

2
1 3
2 2

Sample Output

3.000000000000
2.666666666667

题意:

一个n行m列的棋盘,每次可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子次数的期望。

那么对于每一颗棋子,在现有的棋盘上,它可能有四种影响:新占了一行,新占了一列,既占了新的一行又占了新的一列,无影响。

注意这里的无影响指的不是下在同一个位置,这是不允许的,指的是已有(1,2),(2,1),下在(1,1)无影响,不增加行和列。

题解一:

dp[i][j][k]  已经占据i行j列,走了k步的时候,还需要走的步数的期望。

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
double dp[][][*];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
memset(dp,,sizeof(dp));
for(int i=n;i>=;i--)
for(int j=m;j>=;j--)
for(int k=i*j;k>=max(i,j);k--)
{
if(i==n&&j==m)
continue;
dp[i][j][k]+=1.0*(n-i)*j/(1.0*n*m-k)*dp[i+][j][k+];
dp[i][j][k]+=1.0*i*(m-j)/(1.0*n*m-k)*dp[i][j+][k+];
dp[i][j][k]+=1.0*(n-i)*(m-j)/(1.0*n*m-k)*dp[i+][j+][k+];
dp[i][j][k]+=1.0*(i*j-k)/(1.0*n*m-k)*dp[i][j][k+];
dp[i][j][k]+=1.0;
}
printf("%.12lf\n",dp[][][]);
}
}

题解二:

dp[i][j][k]表示用了k个棋子共能占领棋盘的i行j列的概率。

所以用dp[i][j][k]-dp[i][j][k-1]得到是第k个棋子恰好使得每行每列都占领的概率。

#include<cstdio>
#include<cstring>
double dp[][][];
int n,m;
int main()
{
int T,i,j,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
int sum=n*m;
for(i=;i<=n;i++)
for(j=;j<=m;j++)
for(k=;k<=sum;k++) dp[i][j][k]=;
dp[][][]=1.0;
for(k=;k<=sum;k++)
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
dp[i][j][k]+=(dp[i][j][k-]*(i*j-k+)*1.0/(sum-k+));//添加的位置没有新增新行或新列
dp[i][j][k]+=(dp[i-][j][k-]*((n-i+)*j)*1.0/(sum-k+));//增加行不增加列
dp[i][j][k]+=(dp[i][j-][k-]*(m-j+)*i*1.0/(sum-k+));//增加列不增加行
dp[i][j][k]+=(dp[i-][j-][k-]*(n-i+)*(m-j+)*1.0/(sum-k+));//既增加列也增加行
// printf("i:%d j;%d k;%d dp:%lf\n",i,j,k,dp[i][j][k]);
}
double ans=;
for(k=;k<=sum;k++) ans+=(dp[n][m][k]-dp[n][m][k-])*k;
printf("%.10lf\n",ans);
}
return ;
}

ZOJ 3822 Domination (三维概率DP)的更多相关文章

  1. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  2. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  3. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  4. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  5. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  6. Domination(概率DP)

    Domination 题目链接:https://odzkskevi.qnssl.com/9713ae1d3ff2cc043442f25e9a86814c?v=1531624384 Edward is ...

  7. zoj 3822 Domination(2014牡丹江区域赛D称号)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  8. zoj 3822 Domination(2014牡丹江区域赛D题) (概率dp)

    3799567 2014-10-14 10:13:59                                                                     Acce ...

  9. ZOJ 3822 Domination(概率dp)

    一个n行m列的棋盘,每天可以放一个棋子,问要使得棋盘的每行每列都至少有一个棋子 需要的放棋子天数的期望. dp[i][j][k]表示用了k天棋子共能占领棋盘的i行j列的概率. 他的放置策略是,每放一次 ...

随机推荐

  1. yii自定义行为组件(简介版)

    yii2 给框架底层预定义事件自定义处理程序. 1. common\config\main.php  修改配置文件添加   'as behaviors' => 'backend\behavior ...

  2. 一件安装lnmp

    wget -c http://soft.vpser.net/lnmp/lnmp1.2-full.tar.gz && tar zxf lnmp1.2-full.tar.gz && ...

  3. zookeeper集群(二)

    经过前一篇文章<zookeeper伪集群一>的阅读,相信大家对zookeeper集群已经有一定的了解了,接下来我们再谈谈zookeeper真集群.其实真集群和伪集群还是有很多相似的部分的, ...

  4. 子查询,用户管理,pymysql使用

    当我们的一条记录 分散不同的表中时,就需要进行多表查询例如 一对一 一对多 多对多 1.笛卡尔积查询 意思就是将两个表中的所有数据 全部关联在一起例如A表有两条 B表有三条 一共有6条会产生大量的错误 ...

  5. awk命令例子详解

    awk -F: '{print "Number of dields: "NF}' passwd 字段分隔符设为冒号,所以每条记录的字段数变成7: awk  '{print &quo ...

  6. Java中String类new创建和直接赋值字符串的区别

    转自:https://blog.csdn.net/a986410589/article/details/52454492 方式一:String a = “aaa” ; 方式二:String b = n ...

  7. 两个category方法相同调用哪个

    Category扩展,它是对一个类进行功能的扩展.在项目的开发过程中,在不断的迭代开发过程中,我们的类也不可避免的要根据需求来增加新的功能,而这个时候很多的人可能会新建一个子类,然后在子类中去增加我们 ...

  8. 剑指Offer - 九度1361 - 翻转单词顺序

    剑指Offer - 九度1361 - 翻转单词顺序2013-11-23 02:45 题目描述: JOBDU最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Cat对Fi ...

  9. 程序员必备PC维修法(软件篇)

    学会使用专业软件检测与修复电脑硬件故障问题也是程序员的一种软技能. windows篇 情景:如何获取电脑硬件的真实信息.(如何检验选购回来的硬件是否正品) 自检:使用AIDA64软件检查电脑硬件,能详 ...

  10. chromedriver版本支持的Chrome版本

    下载chromedriver,链接:http://chromedriver.storage.googleapis.com/index.html   chromedirver版本 支持的Chrome版本 ...