http://acm.hdu.edu.cn/showproblem.php?pid=5917

即世界上任意6个人中,总有3个人相互认识,或互相皆不认识。

所以子集 >= 6的一定是合法的。

然后总的子集数目是2^n,减去不合法的,暴力枚举即可。

选了1个肯定不合法,2个也是,3个的话C(n, 3)枚举判断,C(n, 4), C(n, 5)

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = + ;
int e[maxn][maxn];
const LL MOD = 1e9 + ;
void add(LL &x, LL y) {
x = (x + MOD + y) % MOD;
}
bool ok(int i, int j, int k) {
return ((e[i][j] && e[j][k] && e[k][i]) || (!e[i][j] && !e[j][k] && !e[k][i]));
}
LL po[maxn];
int f;
void work() {
memset(e, false, sizeof e);
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
e[u][v] = e[v][u] = ;
}
LL ans = po[n];
add(ans, -(n + ));
add(ans, -(n * (n - ) / ));
LL t = ;
for (int i = ; i <= n; ++i) {
for (int j = i + ; j <= n; ++j) {
for (int k = j + ; k <= n; ++k) {
if (!ok(i, j, k)) t++;
}
}
}
for (int i = ; i <= n; ++i) {
for (int j = i + ; j <= n; ++j) {
for (int k = j + ; k <= n; ++k) {
for (int h = k + ; h <= n; ++h) {
if (!ok(i, j, k) && !ok(i, j, h) && !ok(i, k, h) && !ok(j, k, h)) t++;
}
}
}
}
for (int i = ; i <= n; ++i) {
for (int j = i + ; j <= n; ++j) {
for (int k = j + ; k <= n; ++k) {
for (int h = k + ; h <= n; ++h) {
for (int ha = h + ; ha <= n; ++ha) {
if (!ok(i, j, k) && !ok(i, j, h) && !ok(i, k, h) && !ok(j, k, h) && !ok(i, j, ha) &&
!ok(i, k, ha) && !ok(i, h, ha) && !ok(j, k, ha) && !ok(j, h, ha) &&
!ok(k, h, ha)) t++;
}
}
}
}
}
t %= MOD;
add(ans, -t);
printf("Case #%d: %lld\n", ++f, ans);
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
po[] = ;
for (int i = ; i <= maxn - ; ++i) {
po[i] = * po[i - ] % MOD;
}
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

HDU 5917 Instability ramsey定理的更多相关文章

  1. 2017CCPC 网络选拔赛1003 Ramsey定理

    Ramsey定理 任意6个人中,一定有三个人互为朋友,或者互相不是朋友. 证明 这里我就不证明了.下面链接有证明 鸽巢原理 Ramsey定理 AC代码 #include <stdio.h> ...

  2. 鸽巢原理及其扩展——Ramsey定理

    第一部分:鸽巢原理 咕咕咕!!! 然鹅大家还是最熟悉我→ a数组:but 我也很重要 $:我好像也出现不少次 以上纯属灌水 文章简叙:鸽巢原理对初赛时的问题求解以及复赛的数论题目都有启发意义.直接的初 ...

  3. hdu 5917

    题意:给你一个无向图,问图中有多少个符合条件的集合?条件为这个集合里面存在一个子集(大小>=3)为团或者都是孤立点.答案mod1e9+7: 根据 Ramsey定理,大于等于6个的集合,肯定存在一 ...

  4. HDU 5768 中国剩余定理

    题目链接:Lucky7 题意:求在l和r范围内,满足能被7整除,而且不满足任意一组,x mod p[i] = a[i]的数的个数. 思路:容斥定理+中国剩余定理+快速乘法. (奇+ 偶-) #incl ...

  5. hdu 4704 同余定理+普通快速幂

    此题往后推几步就可找到规律,从1开始,答案分别是1,2,4,8,16.... 这样就可以知道,题目的目的是求2^n%Mod的结果.....此时想,应该会想到快速幂...然后接着会发现,由于n的值过大, ...

  6. hdu 2973"YAPTCHA"(威尔逊定理)

    传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...

  7. HDU 6158 笛卡尔定理+韦达定理

    The Designer Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  8. HDU 6158 笛卡尔定理 几何

    LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...

  9. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

随机推荐

  1. CF 1036B Diagonal Walking v.2——思路

    题目:http://codeforces.com/contest/1036/problem/B 比赛时只能想出不合法的情况还有走到终点附近的方式. 设n<m,不合法就是m<k.走到终点方式 ...

  2. C#添加修改控件css样式

    一.添加属性 MyStyleSheet.Attributes.Add("href","/css/flostyle.css") 二.改变css样式 if (use ...

  3. Poj1163 The Triangle(动态规划求最大权值的路径)

    一.Description 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a pro ...

  4. 图解Stm32使用jlink下载程序时jtag接口(SW和JTAG模式)的简化方法

    转自: http://www.it165.net/embed/html/201308/2332.html 用过stm32的人都知道stm32有两种常用下载程序的方法,用串口和jlink.串口下载方法和 ...

  5. linux命令-gzip压缩

    把很大的目录/文件压缩成更小的文件,传输节省带宽,从服务端到客户端下载过程节省时间,减少带宽,节省使用率.使用cpu的资源. 压缩命令gzip [root@wangshaojun ~]# ls111. ...

  6. .net之特性(Attribute)

    看了一些关于这方面的文档,自我总结: 特性(Attribute)就是对一个方法或类做的一个额外的属性说明,也就是附加说明 下面是我自己抄的一个实例程序: using System; using Sys ...

  7. 使用pygame制作一个简单的游戏

    翻译自Will McGugan的<Beginning Game Development with Python and Pygame –From Novice to Professional&g ...

  8. assert.fail()

    assert.fail(message) assert.fail(actual, expected[, message[, operator[, stackStartFunction]]]) oper ...

  9. Angular06 组件、模块、父子组件之间的数据传递

    1 创建组件 进入到angular项目的根目录,执行如下命令 ng g component test-component 注意:执行完上述命令后在angular项目的src/app文件夹下就会多出一个 ...

  10. 33、VCF格式

    转载:http://blog.sina.com.cn/s/blog_7110867f0101njf5.html http://www.cnblogs.com/liuhui0622/p/6246111. ...