n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3)

因为圆上各点到圆心的距离相同,于是可以列出距离方程

\[(a1-x)^2+(b1-y)^2=(a2-x)^2+(b2-y)^2
\]

\[(a1-x)^2+(b1-y)^2=(a3-x)^2+(b3-y)^2
\]

然后化简

\[-2(a2-a1)x-2(b2-b1)y=a1^2-a2^2+b1^2-b2^2
\]

\[-2(a3-a1)x-2(b3-b1)y=a1^2-a3^2+b1^2-b3^2;
\]

然后就可以用高斯消元了

#include<iostream>
#include<cstdio>
using namespace std;
const int N=25;
int n;
double f[N],a[N][N],p;
void gaosi()
{
for(int i=1;i<=n;i++)
{
int nw=i;
for(int j=i+1;j<=n;j++)
if(a[j][i]>a[nw][i])
nw=j;
for(int j=i;j<=n+1;j++)
swap(a[nw][j],a[i][j]);
for(int j=i+1;j<=n+1;j++)
a[i][j]/=a[i][i];
a[i][i]=1;
for(int j=i+1;j<=n;j++)
{
for(int k=i+1;k<=n+1;k++)
a[j][k]-=a[j][i]*a[i][k];
a[j][i]=0;
}
}
for(int i=n;i>=1;i--)
for(int j=i+1;j<=n;j++)
{
a[i][n+1]-=a[i][j]*a[j][n+1];
a[i][j]=0;
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf",&f[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%lf",&p);
a[i][j]=2*(p-f[j]);
a[i][n+1]+=p*p-f[j]*f[j];
}
gaosi();
for(int i=1;i<=n;i++)
printf("%.3lf ",a[i][n+1]);
return 0;
}

bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】的更多相关文章

  1. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  2. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  5. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  6. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  7. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  8. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  9. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

随机推荐

  1. Boost.Asio基本原理(CSDN也有Markdown了,好开森)

    Boost.Asio基本原理 这一章涵盖了使用Boost.Asio时必须知道的一些事情.我们也将深入研究比同步编程更复杂.更有乐趣的异步编程. 网络API 这一部分包含了当使用Boost.Asio编写 ...

  2. Python内置:items()方法

    文章转载于:https://www.cnblogs.com/wushuaishuai/p/7738118.html(博主:IT技术随笔) #Python3中已取消iteritems()方法 描述 Py ...

  3. SpringBoot JPA 中无法注入 JpaRepository 接口的问题及解决方案

    错误: 在Springboot  框架中使用JPA的过程中,怎么来实现数据库操作底层的交互呢?Spring JPA其实已经提供了一套很全面的解决方案,实现对数据库的增.删.查.改只需要继承JPA实现类 ...

  4. throw和throws的区别和联系

    突然发现今天诗兴大发,看来又得写点内容了. throw和throws对于Java程序员而言它们真的不是很陌生.但对于我这样的选手而言一提到它们的区别和联系就蒙圈了... 为了以后不蒙圈,今天就研究一下 ...

  5. Jlink flash 烧录HEX 程序

    一般Jlink版本 和 Jag(硬件)最好匹配 安装Jlink 时,IAR的工具包也可以顺带安装. 有源码: IAR 可以自动选择CPU型号,代码直接Download and debug https: ...

  6. C# EntityFramwork(Model First)使用要点

    本文介绍EntityFramework使用方法 Entity Framework的注意点 由于安装和操作的细节讲起来很琐碎,这部分只罗列出难点,其他细节请自行查阅 安装细节 Pluralize or ...

  7. java常用八大排序法

    最近查资料发现java排序挺有意思的,其中包含常见八种具有代表性的排序法:笔者觉得排序的功能重要,但更重要的是排序的思想:所以简单叙述一下常见排序方法名称,并用代码举例. A.插入排序(直接插入排序. ...

  8. 【坑】idea+tomcat

    idea用tomcat外置容器部署debug要清掉webapp里面的同名项目,否则就呵呵呵呵了

  9. apache server和tomcat集群配置三:水平集群下的tomcat集群配置

    在jsp文件中加入以下代码,用来测试是否共享session: SessionID: <%= session.getId() %> 之前尝试在linux中,但是因为模拟环境是虚拟机,虚拟机只 ...

  10. springboot中单元测试

    测试service: 测试api: