【python之旅】python的模块
一、定义模块:
模块:用来从逻辑上组织python代码(变量、函数、类、逻辑:实现一个功能),本质就是以.py结尾的python文件(文件名:test.py ,对应的模块名就是test)
包:用来从逻辑上组织模块的,本质就是一个目录(必须带有__init__.py的文件)
二、导入方法:
1、import module_guyun
- #命名为module_guyun.py
- #需要导入的模块内容
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- name = "guyun"
- def say_hallo():
- print("hello guyun")
- ########################
- #导入模块
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- import module_guyun
- print(module_guyun.name)
- module_guyun.say_hallo()
- 执行结果:
- guyun
- hello guyun
2、from module_alex import logger as logger_guyun #别名
当要导入的模块与本模块命名重复时,别名要导入的模块可以解决这个问题
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- name = "guyun"
- def say_hallo():
- print("hello guyun")
- def logger():
- print("in the module_guyun")
- def running():
- pass
- ##################
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- from module_guyun import logger as logger_guyun
- def logger():
- print("in the main")
- logger()
- logger_guyun()
- ##执行结果:
- in the main
- in the module_guyun
3、导入一个包实际的本质就是导入一个__init__.py
包package_test里面的init文件
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- print("from test package package_test")
现在把package_testp_test文件导入p_test
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- import package_test
- ##执行结果:
- from test package package_test
4、当文件目录不再同一级目录之后该如何调用
-module_test
-main.py
-module_guyun.py
现在main.py去调用module_guyun.py
- #module_guyun.py文件
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- name = "guyun"
- def say_hallo():
- print("hello guyun")
- def logger():
- print("in the module_guyun")
- def running():
- pass
- ##main.py文件
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- #from module_guyun import logger as logger_guyun
- import sys,os
- x = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
- #print(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- sys.path.append(x)
- import module_guyun
- module_guyun.say_hallo()
- module_guyun.logger()
- ####
- #执行结果:
- hello guyun
- in the module_guyun
5、如何导入一个包
-package_test
-test1.py
-__init__.py
-p_test.py
- #init文件
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- print("from test package package_test")
- from . import test1
- #test1文件
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- def test():
- print("in the test1")
- ###调用文件
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # Author :GU
- import package_test ###执行init.py文件
- package_test.test1.test()
- #执行结果:
- from test package package_test
- in the test1
- ####达到的目的就是在同一级目录倒入一个包的文件,中间通过init文件调度
总结
- import module_alex
- import module_alex,module2_alex #调用多个模块
- for module_alex import * ###不建议用
- from module_alex import m1,m2,m3 ##调用一个模块中的多个小模块
- from module_alex import logger as logger_alex ###别名
三、import本质(路径搜索和搜索路径)
导入模块的本质就是把python文件解释一遍
import moile_name ------->module_name.py ----->module_name.py的路径----->sys.path
导入包的本质就是在执行这个包里面的__init__.py文件
四、导入优化
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdUAAAFQCAIAAABmpnPLAAAgAElEQVR4nOzdd1xTV/8H8Ouo42nt01/71KfLtj601bqqVlu1Vqt1D8RRRx2ttc466xaVS5iCLEERRJSNCIKDLUtAEAXZhLADIUAWgYTsfH9/JEAICIpKpH7fL1591dyTc09ubj4599xzbwhACCGkC4SuG4AQQq8pzF+EENINzF+EENINzF+EENINzN/nQYuMLO/2k7n3HPc53eO9wOYghHqVZ8vfgN22n35q1/wXFMqXvqRmveKY6dd3Lvj0008/mHE69tmeWZ9zfteyrz/99NNPP/34ww++/+t67ctp4T9AfkDEzAl2n35qZ3Ff101B6OV42vxVyoq3D6b0ecd2uXMVgDDK3P/zISRBXIt5qa17pVHP63//0/Go7j69xHjqkB7KX6VMLFX0wHoAAJRyqUyufAEVcTz+uDq0D0kQ5HDDkhdQnw4oRI2SJoniBWwNhVQiexEb9WkopT23t7z2njJ/5XkXfAf2Nx62Pr0OAECUeiVKf6br5MnRD19m415tvSd/S7x2OeX0wHoAABgR5leS6wXy56+p6Hbcynmukye7Oj56/sp0QZSzbNCZOUdzWc9dkzTT8qR3xQto0tModP7dvqiH1vXae8r85Xv/7vRGX3L4ieKX25zepNfkb93NvfPt0l/+egAAeIn2fzrcZr+I/O3t+HG3PntB+Vt2ce7vPZW/NX7rf8T87SkvMn/rs/Mop2PIy+X1L6Rpr7r2+SsseJBVxRe2KdVQGPuwUt7BMWgP5W9jUcKJlV/8YJ76ktcDACCqznHaM/OnI14vKH8b4pySTxzLfp7RBz6d6XcuJTKHL3kRDQIAfm6BGRlzyrWsixOnZUU75lgTg6yeP3+5D71WfTuwZ/KXnxe6a+77mL89ptP8lYlzQpP/0PfV1/eaOMy8bx/yX1+66ev76ev76etHhlAb5AAAyrqiEoutvvr6fnMn2Q3ob/zv+cmVjfxI18jmknfuVLettpZ2WN+3eamf/qnHZWz1eTwRs8adEty6SN9PX9/vt+PRlocjNun76ev7LV8ddDFJ8DQvjENLsN6vr69/OqIy8by+vr6+/tajFqnUQl+T/b/o6+vrH4rWSr7Hl/SbbbX0K2F39IHN9lCX2PC3e+xtm5b8lfIzb9lt1l/w/cLDd8vY6tdSnetO2aI/f8oCo3BxB4N3XeZvkefWTeq1HTCNKWx8mlfdStL4OMBYX19//tRR7/yr/zsjf2x+cX+dv5XF1y5dFWpyaK2+vr6+/i+/7/J5xO2gQuYjG8Pt6jpW/rrr9JWQyNsVzd813HhbfX39hTMnffLuwCGfT1ywaKm+vr6+/ibSKa7m2doN4voGXyPV7nHl63fM+hABWqc4mWHRWnuIvr7f0etZZs071S7HIo5QIZfSLfR95/3o8vG/LxheSiG332gpvN86q5DTbsW8Kqd9IQYtde6OD8tp2dOUnLKyM9t89fX95k22H/SG8eDZSXRBY6x7VMtOfku1kzfVR7nErNf31f/hXJ8+JNHP5P0vXBc013kuRfYMG4KV726xV19ff874D/v06Tts4tzmd/B0RGX7NyjfecVy1eLfDZ0eVgg7qLAweMPaVeo6Nh02t7ALeVzYpPqiFNTGXD6hr68/77svBg/o+96Yn5vX9bdnUnHTMzQaPZtO81epbKpvLKVxaLSKsysc+vclP9nxmEbj0GgcGo3PE6lPs8jE4uoyDo1GP7fhwpv9yTdnxJ7eajd0osfxU2E/jrEmCJPPTpW2VJnrc2f6WOvBfY33+nFoNGaAWdDXH1l+OtzDrVgJAAqptDgiac5YC4IgCcLb7WH5gZlG/QebvjXI1dCvOMLYpU9fs++WpdCe4oXJRA0FwSbTR3w09LM/Ami0tFi3NV+/9eGktdYBcfm0hJOTh0w686C5LOu2of6YT2eYxtJoNBot/abhujmj5hk9rhdpVph9dfN3X04/fZdGo9FoWbEO+5brvTnoW1X+KuVCXk3cxd2Tft4UWqLOX4W0icVIsFg2deaBG6JnzF9umuf6BfqGfqk0Go1Gy7jhuG/WMAO7qPyOPlVPoFQIOQwajUajhR6d/NWk/ddpauW1PKFm77SxKM5wo8Eum+DH+TQarTApzGzxRz8dcorT7LWx8qOObP3FzC8ml0aj0Whp8dZz/vV/0zccvc9o3toNTBqNRqPF266f9cN667SsAhqNRqOVMmobnnWKjEIuZ1dxaDTObUv/z98liXb5K63nB+xzIAiSIOzWncxwO+H2zmBy8HvW48aH+oU9/GXKmQFv+/iXC5VKSXlq0fFlZwnC5N33Ld98w8ONxqHlVXmd9vl8iOWwdffyqsUtddIT03//+ey/B1JWOlbTaKz4oHvz/mc29JNL5M1akRygdSevdPrd5e0B5MDpccY77P474cqhk+E/jz9LECYfHC9RtZ5fxy+hcWg0jts6khhoOW1b6gP1R4ZT0/gs59BkTazqChqNRqN5r+4/YMXZhOZ3sKpe0ubwoi7eYcH0pebhqm2e4mn0xw+frbuSWalZiHbz1OI1+29k5NBoNBrtoY/51glvvb3q7F2uah9XSPmsShqNRqPd2PXZ0EmG0c3rorMbxXgy7uV5keMPD2yuvDOYJAjyw7FXvHMAWCUHf3J8sz9lznn1Z5l1L2XOGIs+fZ0cNI5vMi9d/997JEFcj1MAAHDTMgwmWRLEOctMKTQJI0yvEgQ5Y296ERcg+hZBUPS+C7n7dAft7GSX+eOmHosoA4DG6jzDucPXngxRdVMidg0ctvIyAwBAyYwwHf/5xsB6za/5PJufxg3e4NMybFAbazd9xDSje5or1h5/oN0y+nFBa/4CAECx+8bZs58xf5X0xL9X6G9zu68xu48RYrh2+NyT+cxn7AUDAORazxjzI+UJ4w+8EvcDvyw96lPaelDRkOZ39NtJG64/YqofkHDizxsfPhHMaH2atOy+287NW27naPWky33/WjJn14sZf6iJiBk7zKx9/gJACsWJIMym/ZrwmAfw4N7H75kNeNPS8j5AZfnhlU4EYWcYwwcAcS3LZoMtQZB950fnVzcf0NRUmW5y7kOQy89Vq87zC0rKDy8526eP7f6AmpawKY97sGQ0SRBXfZhizVWn2Xu+/xZJEOTQkW5XswHYZcfmnX+rP2Wmg/YwQ/gO8oWMPwDEbe3/xPEHJe322p8WHr5F05h0Uurxx9yhy2zrRc3dbV7GmXVHnOMLNY7p6uPtf19+9Eptg1aX/NHJLz7C8Yce8+Lzd8CbdscjGtovVYjZnvu8PiIoM8xK2yxgFe2ccLYPQS5xYEoBuGkZyydbEoRXUKOsOX+tfjHJYzR1L3/XuORXgyp/14zb5ZKsallL/sprkk7qf//ziVsCSZuv+Zo7h4cNmWCZKQEAkJd571kyfNL+1DrNoY+XlL/CrBuU2ct3RORp1gOFIYbTPp9q86jqqV55G53kr4KR7bt23nzbu22uIqlO8/114qgDXin1qk0i5SVfPr5p/am7RTxpS642VaUkx2YUaX0f9GT+Wi/emVEO6vwdNMTNj/6k/HU2DKzSaKjg7tmQrweSxJz4OqlSKRen+oaOJYzH/p6cX6sRRg01jn9cfrcfOfoQTXMoSpW//QaePRTabhSnrR7JX36Sy+7v1hhmVbV5I7Kvbh4xdLY7o7lL0ZDruHn9rjPXaByNF8hN876dydd+pzB/e9SLz9+3v4jI7GgpJyt/848WBGF3PErr1EVT0E6nvn3IT+cmlfR4/tYkuy2b8MOJOwUSrYTk3Fn7nyHfWWUBALDSzX6dMnO/X12bnfXl5K+cFXt++/RJy0wcPfw12B1a/tX7xGrXgqd65W08OX+VsqJY0zl63+02v6y5rotme38YTsw9cZ2h/lDLmPmRhsvHzlq3+/wVf39//6wnbv9ekb9QHJow6wuSILxDRHIxt95hvRVBWK21KKhuM+AkSXK8MeJdkvhfaJbGo6r8HTQs7HFX7e+J/JVVBp1c/f2Pm+xdvTXfQatdP330NvF7YMs3hCDnpsP6qe//fOCSv7//zfCYJ58ix/ztUS8+f/89P7myo6VVKZmrx5Md5S8kGl/o15f86MuI9B7P39JIq3kjZtqmlLY7M5J6cOg77x2IBgCg39tvMHaRaQS3zefz5eSviHHLfM3XI378c78h2c719G58lp+cvwpJ7vV94z7+euW2Y+3X5RmT16DR8eMW3fNwJMkDKz/v32/6b0YWju6p5e2Ho3tf/gpZXOMFRh3lL+T63B77IUkQ/tEaD6ryd/DsJHpX7e+J/G2kue9fOOKbBXuPnGr/Dobktxk5qbp/1dKMPL519v+GfrZ8p5GdX0wVr/3gPOZvj+q5/O20/+uo2f81mNRz+Vub7LZswg/H2/d/2ar+bzaAuv+7qgfzd6r+sfulTzXN4yl0kb9TJ6/wftjRhIcOCcvjAq/7Xr24e/n42X/ZP6JrRXCvyF/pY9+o7z8iic+CU8QKMbf+XOf9X73QbI1HX8H8nbrRllYn7mBpR6ScvIhr165YH1o0Z9pv9tH1TTj+oEs9l78KTrXt5kv/Jig/mrYd/wWmxXd2fQlyyTmmrMfzV16TfFL/+98cHzRpdYDTHT57Z/KZLPX4r8+epSNW2VTxNPfyl5O/SkHG9dMzf/zFM42u1aJ8f/9E1gvo/5aEhycWF4sBAORV6R4rp0w7FZClNceoPC4uMS9PFa5NLEbEFbsMjS9NpULGeHB9x+bfbSKobT/32vnLTE9PTEl56nRv46Xlb2OE5Y0R/UhiSSJfqlSKm2Id/D8ijMdojf8C79pe74/7djz+2538fZw6eaKzfVo3toR2/j5yckpU/Z+Cl3Bh57czt0aUsLX2sEw3t0Sx+s1hpEYER96t0fh2kYv42dcMp6w63faUBrTP34KAgMS6um40Gj2NnstfAKhTzX/o4xuh8eDjlvkPSoAez18AZdbVzSM/WN52/kPt9b++f2uzT8s+nee/b+KwRZ701iRhJzn/PObdPmvdWh+5f2nh+DXOOYyWZ3HTPA0mvT+uG/Mflo9bSAljabaIFnL8Umg5pxuXEdRe2zH5rS1+zf+kX/MPy8trznFe6ZUDP03ZYtVmSLc67ZKnRyxNfRJVwik/b7zZMKTtrL+6nLOnj5nfyml7yM6LsV7/xXpLJl/1yecmJoZFR2t93T6tF5e/5LyT+dXNAVyTkf/bdyRB2B4IrlO9Lar5D0QfN9uU1vNTzfMfPHxqOpj/0I38vW/uMqh/QGx37uJQembagImmyc3/zDA6HdpSjbLo9tqZX6w6/1imef4422PrhfjG5lPKvIxr646aJtDaznnO85+33iShVutUOePyqs8G7Gz5gNJcXMIYjG7MukFPpYv8lYklzHI2lVpuvdyhf1/yk+0ZVCqbSuUwOK33A5GKxIwSNpVa4bD+wpv9ySHTo+OpbCqVW8OVtD8KzfW9M2OUZZ++Tmdi2VQqO9I5dNJIy8/1PC+XqOf/FoUnzRljQRDujhm8mvIq8zU2BGG5YF9adkUD7ep1gqB8Oi7gWk5Tl5MSZSJ+3g3K9BGLKGGZAgBGZuiORSN+pdwo4zfymGWXfx3w4QLLR3WNcgAA9p2Ty8Z99ocHVSX2/M7V3y2kZPI1s4UTZf7r6A+WX6ZSqVRqZozvPrMtK78a99VwvVGjSfX9CXiP7TfPGbrUJL+ggEqlZiXcsLtwYPPMOd8M1xsx4oR6srFcxGFU0KhUKjV6z/g3v1nvcJ9KpVJLavgizUvkuGleG+Z9/f0eb1WD0qN99+w76pNW0b3bzTHDyDEfTyKjqVQqNTnY2zskjKGR7I1F8SfXT5q0yfLew1wqlZr9INb86E6zwMyWkQUpt8Jlx8QhXy0kvSOzVQ3KTb9hs/23nZbpTO11cVIuL500bf+1VCqVmp4Q5XvZJbeLaQLaFHI5q5JNpbKT3O589aEpQXh7UNlUKofOVL/pUl79tb0OBHFm5rrktKr6lIvX3xtCGfjmxXNJ9dUZeVvmOxCEzY6rlVxpS/6avPkmZfT2h1QqOyORtmMaZch7NuutCqs1UqUyKf2PWdaDB9gfuFFNpbJTwx6vm2L232FuxhrzfxklbCqV7vjbxbcHkIOmRMZR2VQql8npYCdXuxc5/APzj8d7OkWwk9xujxnlsMqlm1c70i6tHjdhuWsSlUqlRjqSHo8ZmktZCecWTv3f1COhqjcn7fbFTbvIiKK6lo8IPytw/awR73+/PfBRlnoffxRqtkV/7/mk+nbjFlVB+z59b5JVHJVKpSZ4O3tFp3QwSoxekC7yl1dS6XDIz8DAv+1f8NnASq66K6ZkFZVYbmtf5s75m9Udf/RyM9qUPK15/VvtFdOQ5kXJvr6hzf9/09X13po1AQYG/gYG14/Z5HY5OsqhJZz928DAwMDAwDodIMJK9f9/eySkhTvsXrHcwOCXjSevpLa2MNPNoNlxl/AOv/KzPf9UFdh0yCKuiBpm5pdc3fZEMveh7c7fVWU27DUKz6fd9Y/Oq+S1RqugOMj6yDoDLdsuxhaJtL5ROKmWWzaol+881Tobt1uy3Depatpt4tzB7AV+3tVTe35Rldi43SaqbY9VxEu9deWs4/lTBzc1N/iX3YbuTwpW2s2T61cbGBgY/L7nWNyzXzQrrm/wI9vvToEnHPJVJ/yY4Xdb9jELi5hduwINDPwNDK5t3Rp19mxU86LQ29Wt4w+rt15bs76lqptnfejtL3+D8uKju2+0rnFvQnhum+vfrLa3b9Xtc0FVnVxtz4hKaCm87zJd0t0bwynk0juW6k1v5JPCE7UrURd/YuUKdYn9Z2IK2kxehNosZ1ffG15mv65d2fwO/mbhk/SkQeM0J3Whg3bXirs3eISeDt5/Hf1jPWn+A0KvCMxf9M8kl1XZ/eL77XAzgrAcO9N7rWHWcx1BIPQSYP72Nsqko5O6YBzzDDeK+KdSKpuKHzIetvzl1bc/akdItzB/ex25WNiFbo8zIoR6EuYvQgjpBuYvQgjpBuYvQgjpRmf5y2azFQqFQqFgs9kikQgAxGIxi8VSPVhbWyuVSgFAKBRyuVyFQiGXy6urq+VyuVKpbGho4PP5SqVSLpczGAzVgzweTyAQKJVKmUxWU1Pz9JWr6mmpXKF4ultCC4Vw+TIUFgIAFBbC5csgFEJDA9jaQk0NyOXw4AEEBYFYDPX1YGQEXC5IpRAVBXfvglQKHA4YG0N9PYhEcP06PHoECgVUV4O9PTQ2glAIly5BUREAQEEBXLmirvzsWairA7kcUlIgOFhd+cmTwOWCRAIRERAbCzIZcDhgYgJ8PohEcO0apKeDQgFVVXDuHDQ2gkAALi5QUgJKJeTlgacnNDVBQwNYWQGbDXI53L8PN2+CWAw8HhgaqisPC4P4eHXlZmbqyv38IDMTFAqg08HJSV35xYtQVgZKJeTkgJcXNDUBnw+WlsBmg0wGiYlw+zZIJMDjwfHjwOOBRAJ37sC9eyCTAZsN5ubA50NTE/j4QFYWKJVQXg4XLoBAAAIBnD8PFRWgVEJWFvj6qit/yrcMtRCLITAQ0tJAoYCaGrCzU+91ly8DjQYAUFgI7u6tu3RtrfYuffq0epeOjISYGO1dOiCgs106Px+uXlVXbm0N3bnwHXWts/zl8XhMJpPFYjGZTDqdLhAI6HR6TU1NXV1dTU1NTU1NRUVFY2NjZWVldXU1m82urq6uq6uj0+n19fVVVVUMBoPH41VWVtbV1TEYDA6HU11dXVVV1dDQUF5eXltbq1m5UCik0+lMJlNVeW1trWblHA6HwWC0VM7hdDB9XhuXCxcvwpkzsGcPZGTAnj1w5gxcvAhWVmBvD9u2QXw8HD4MFAr4+sLJk+DsDPv3w61bcPIkGBrCnTuwdy9cuACnT4O3N5iYwKFDcO8ebN8OdnZw9ixcuABWVrB7Nzx6BHv3gqUluLqCpSU4OMDWrRAbC4cPg7Ex+PvDiRNw8SIcOAAhIXDqFJw4AWFhsHs3nD8PRkbg6QmmpnDwICQmwo4dYGsLNjbg5ATW1rB7N6Slwb59YGEBly6BuTmcOwdbt8Ldu3DkCJAkXLsGx46BiwscPAg3bsCpU3D8OISHw65d4OQExsZw9SqYmcHff0NyMuzcCTY2YGcH587B2bPw11+Qmgr794O5OVy+DKam4OgI27dDVBQcPQpGRnD9Ohw5Aq6ucPgwBAbC6dNw7BhERsKOHeDkBCYmcOUKmJvDgQOQkgK7doGNDTg4gIMD2NjArl1w/z4cOABmZnDlCpiYAJvd9VuGWggE4OMDFAocOgTx8bBtG9jbg5UVODurd+n09NZd+swZ9S4dF9e6Sxsaqnfpmzfh5Ek4cQLu3IE9e9S7tJcXmJjAwYNtdunz51t36X37tHdp9BJ0lr+qzimDwZDJZGKxOC8vTywWy+VyJpNZW1srl8tFIhGVSpVIJDKZrLKyUtULFggExcXFUqlUKpWWlpY2NjYqlcr6+vqKigqZTCaRSAoLC0UikUKhYLFYqq6xVuV1dXUKhUKzcjqdzuPxlEqlQCAoKSlRdY27EBoKFApwuUCjwejRQKMBlwsUCri4QGMj5OXB7NlQVga1tbB7t7qjeu8erF0LVVVQVQW//ALJyeo+yN69UFcHZWUwYwbk50NDA5w/D2ZmwONBYSGMGwdFRcDhgJERXLoEAgHk5sLcuVBeDjU1sGMH3LoFEgnExcH69cBgQGUlrFgBqanqnu/ff0NdHZSWwvTp6sodHcHSUl35hAnqyk+eBHd3EAggJwcWLICKCmAyYds2CA0FqRTu3oVNm6C6Guh0WLYMHj6Epibw9YVDh4DFgpISmDoVCgqAzwc7O7C2hvp6oFJh0iQoLgY2G44fBw8PEAohMxMWLVJXvmULhIere0+bN6srX7IEMjKgqQm8vODoUWCzoaQEvvsOqFTg88HGBmxsgM+HggL4/nsoKQEWC44cAW9veJq3DLXIzITdu6G2FsrKYNYsyMuDxka4eBFMTNS79Jgx6l3a2LiDXfqvvyAkBMRiSEiAdeuAwVDv0vfvqw/m9u1T73Wd79KnT4Obm3qXRi8Bjv8ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP4ihJBuYP72DoLS5MC4dI5QDqBMCzS5k8vXdYsQQs+LKOmIRCLRdcNQK2HFQ8/L9gH3y0RSBQCUJPtYmv4dlocRjFDvRkjbKS0tFYlEnT+t4HrkT2ujswXynmllZ2SidF+jbecS6nXdkJdEwipxNvzjkPs9rkypekQpF2aHWZ02ssqs0W3TEELPpYPxh7Kysifmb5Mw0tLnrX+Z9u9LEmNuP2qUdXe9ijpq5d+zjQf+y/ztt80Hv2FMENfCG2XPEOese0fmTnzv7bffHvLmgH9/ttIsktvdprzSFJKcAOPtmz1KtR4XFHse2r7XOowpUuqkXQih5/eM+QsAAKVRyfNGPFf+CqtSZ/elvDP5mnMiD4DvufFc3z7kR19GpD97VeLG9H1T/7H521B+a9ecGQ732e0X8XOub1yzzfMRAwMYoV5KJ/krjt5jQwyx0bcoEgAANCW7Rv+xOeTAsZzybtT1T85f5rU1I6Zt9KN3vLQ2+O+FSw4HceSYwAj1SjrJX87ZKUbEu3arXaq69fQ2/sn5W+I6YcBXZslPPM9WG37q6/Hrgqq7PQqEENIlzN+eVh7ruMspuEHU9abLsZs+YPCm6KYnl+DH7xw9eoVHp4cNFXHHdm9aesCf+cwtRQi9XE+Xv3Ulhxe4fannoKfnoKfnPHm847APOsxfvu8WFz11MQe9GSEBj+tbSzSyfU5en6jnoKdn994gkuhLeet92+bCN2O7exDddf6m2es1+2HT6cQSQfsiGRdXjhmpKjJ+7SH3W96nFk3V09M7mKxRJuvq75PHqsqMNdjpGBJgtXKGnp7e3oQ2NeWdWzjjCz09PT29iQs3+TxqbRSvKugPPT09Pb1hQ98esOIsRyCVN/GCTy/Q09PT01vtnFzcbsZfjcfaYQOn2JR09uqr3NeMeHNXeCclaNf3j/u4HzFwpscTRjEQQrpCZDWj0Wiqh9rkr1LJuv9wyQTLvv0o227KAORlKY+W6xn37aOVv0p5VvpPY637vWFyKAYAoDIpY9V44z59yLVuXIX2Snuq/6usCzk6/6O3JzkUAQBAY5HHoaX//Wp9UD6zNeyV7HCTlf+b/neGQAIAwC5w3DVdbxWZHmT28fu7YtRleDG2v42avjOxtgEAoL7c89DszxcfvBdgPerzXZHNG6ouyWXRxOnHwkqVAACCzJvk1H4T/r6azGvzzVLmtXXBB8vOsvi55nM/2hdUVZ8ZtGH6B6N3ebIFWl9mVW7LPxn8V2Snr57ptXFkv6nWZZ0UyfOdPeHTAVPNtGdQvJaUSqVEIpFIJAqFQiqVSiQSqVSq60ah11fn/V+luLzs+IpzxEDLP6/WSptztP34g6S63Gj5+bcGXbDNaD1aLr0V8/1wCkFcud6gtYYeyV+FuPjOmTnfb/Gl1Wk8Sg/4a8kHCyiVzTOXWalXl0/7xTGtrCX8KuMvLF2w6sqjipZHuI8DN8xaYRld0HJQUP3Ae+2SJY5xtOZOq1JcGn9o7Yrdbkm81o8zO9Z+++jpu+KLORoJzIu2WD186d+XDv4RqHr11Q8t9q7cc/lBo3YHOJMc9cELyF+koa0wlHAAACAASURBVLS0dPz48ePHj3d2dtbX1x8/fvzixYt13Sj0+uo0fxWSrJDYae8ZDZlyO7a0qSVE2uWvLDc44adPyH/Pis7VGG+AkrzV39v2JcjFV7QCuCfyV1qbbrlx1vy/Pav4bfqVvJRz0z//Zm8UR/XPyjinRT+v8Xhc2TL1mJcRsG7aqjPxhS15yEz1+GXBcqfE1iECfl7Ytp+XG93MbB7LaMoNtVy09I+QTJbmuorDzWd/OcowvFDWGsC8aIvVwz/5yvRel1evMS6v/GTwhuvCzsowvTaO7LfgYl1nZVAH1q9fn5GRoetWoNddp/nbJAiz9HmbIL/ckEStbU0x7fyVNoRaXh9OkO9P8jt0LObUqVj1399B3396ph9BvrmnsO0aeiJ/2ZnBm3/4fu/V+/VaF3U0Jv499rNhR+6p/iWqTrPctOqX0z6VEjkAgLAuzvXAopVHbhVwWp4nrs1y2LFu1VG3IoEYAEDES/U6rr9ij39GjbqzK+cmuv01We+7DbuOnNKwe93sz98lljs8lLS2gRdtsXr44lPFjeKuXlnDje2fDfzidHZnZYrOzfvys2NJXVWFtGH+oldBp/kraAg66U50mb9C3vXTPh8Q5LD5oVd8cq9fz9P6C36sg/4v44HP2gmTDQPTG7WfkWkyQa/flpvN/5QU+h8eNXLszwbLV61atWrp8nWbD15NKmk7GiAtDiG/Gztm5pJlq1atWrVs+doNe1zjqPUtESpm3bXfNH78IqNzXtfbuV/EVWj1fzec5Qi6Hnasu7bxjUH6wawnlygLXPTV9/tjesvUj1cI5i96FXSav2JhjH3Ah13mr0IQbR8ygiAHLk+sbXiaS4h7In/r88K2z57yp3MCVyvoWFFbR38y3lT92ePn3t5Nmt+ITctTo5Yx2KK2ZwwbC2OOmFC8I1KayxSU0llNmi9UzLprv2nqgr13C9ulvbZnyF8Q3vnljf/760b1k5YXeP/5xfTdD16Fu3D0Npi/6FWgnb9MJrO+vuVWNpKMoOjJhBExOyK9onVGWrvxX8nj6zE/fEASo2+mcNqeRXqY9Pl/zfdon0PqkfNvDQUuO+euMQxkakViptsEvVlWuep2ch/6rPx+aJ8+ffp8Z/6kGQL12SG/zfiwT58+fb49XfyEVlDv2s+busAhplDrLFqWu3tYeblGQD5L/gJkW077YqJpZscLiy6tm7nNKVPWbn4J6hLmL3oVtOavUqlks9lsdptbDQjL6UZrzg3qd/Z3pzKeHECpbKqutN/q/h5BEsRl+zRmrer0EKPi9EbXwQOMx+zJotVKAAAUMm51yakfL3y64F6F9kp7aP5Z2V0b/W/mmoW1nCWTNbILrhxYNvGAh6Q5tKQCDv1xwL6FM0aNbKH30TsjN1mHtsyRkAp5Vdk3jq6YM7a1zBcfvzdiLRlQ3HK+sS7H/q+f5+45l1qmznuFRFibdo3iEVbM1sxkdjhl1We/Pm3+SkXR+8ZNOuJfrF1aISmPOr/it5PRZZzOJ06LH1364ev3iTFHsnGelQbMX/QqaM1fDodTV9f+RLqUFpuxe4Hj24NdjvrlBgVkme/zGfWh9btDyA/HXl1mcM2j+fRQfXbe0V1eXw6kvLU0JigoP8jr/pYlV3786YZPbuuMtEZGbXxEflBQ2m9fGRFvWU3bkRQUlB8UVJTDlDzz1Rfiusz4yOCgoGs+1otHvD/119OeQUFBQVF5dZpXjjQ89KZsnrPlZJDKZesj29dtsX/AqFevTlyfeNlo5dYT8XSuRgPq7rkcnfGfMcdj2AAAksaHfmfW/HEwjFan0Y3lpHoZzf1w7MGbrdeeNVCjTXbN/3GDSWBgUFBQkM/V84dPWYRkVKpyTyKsSA4KCgpy3jtnwjuTf/PwDQgKvhWXWdXFaTiFrOiG9bo/LKIquBrTOBSN9MRzB3bbBGTyu0pV+m3DiZ8NIv5v6Q28WaUGzF/0KlDnb01NDYv1xBM9jYXFDmfiDA1jDA1jDE1S3LweO9vFeCfVS7WPfHnh5gnqYoYxhtaZj+hNmkVYecUXrWNaC6j/ksMLhM+cv4KS2y62pw212EWVtJvXVXa3ZbGTf3Sl5rnA2myrLRv+PHeXpXXpg/CB4bQfj4SxAAC4RS57Nm4wu83QSrqmDPMFcw8GtB20aKAG2FqoV2Z9MTKvdZMKeRlXtRp7ytj5Vk4HV+O1JROwwlxPHrS9UsRV96MljcxQ171Wl29Xak+s7khN5iUHC8MLsZynKPv6wPxFrwICABgMBo/H03VLdEFUc8dm5+wZq13uV7ZO0RWW37HZ8c3cQ/crhQAAEnbsxb/nTF9+LqZY1NIBbqqKvrB/8tx90dSemHvQxCoNu3zUxCOcJZABKGMvbjF2u1HE6nIGG3oizF/0KiAYDEZDw9P0o/6RFEJOFTXI8udZP0yYMFHtm+mbjjtH5dXI1LekUDTVMwtv2i6dP+Ob1jI//HrAPjS7WtxTJ7/EPEZ5dZ1ErgQADj2XUY+juc8F8xe9CgiN2Q6vK6VcIhaLWomlsnZ3A1LKJZI2ZSTty6DeA/MXvQrw94/Ra0T184alpaV//vlnVFRUaWkpnY73hUM6g/mLXiN0On3x4sWLFy+Oi4vbs2fP4sWLt2zZoutGodcX5i9CCOkG5i9CCOlGZ/lbXV0tl8sVCgWTyRQIBADQ1NTEYDDkcrlcLq+srBSLxQDQ0NBQW1urUCjkcnlZWZlMJlMqlVwul8PhKJVKmUxWUlIik8kUCkVdXR2fz1cqlVKptKKiQlV5dXW1UChsqVxVD51Ol0gkSqWypXKZTFZaWtq+ctWDmpVLJBI6na5VuVAorK6ubqlcKpUqlUo+n19XV6dVOYfD4XK5WpXX1tY2NDRoVc5gMJqamrQqr6ioaF+5agtoVV5WVqaqR1U5AIjF4srKStXmbalcIBAwmUytyuvr61ksllblbDabx+NpVV5TU9PY2KhVeVVVlUyGvxqHkI51lr+NjY2VlZVMJrO2trasrKyhoaG0tLSurq66urqqqorFYhUXF9fX15eXl6vKVFRUcLnckpISDodTWVlZVVXFZrNLS0t5PF55ebnqiXQ6ncfjFRUVsdnsTipns9mqyisqKtpXXlVVpSpTUlKiWXlFRUV9fX1xcbFm5aWlpY2NjaWlpbW1tUwms7KyUrPy6urqurq68vJyHo9XWlrKZrNVlXM4nJKSEi6XW1FRoXqiZuVVVVWqJ5aWljY0NJSVlWlWXlRUxOPx6HR6h5VXVla2r7y8vFxVOYvFal95TU2NqnIOh6NZOYvFKisrq6+vV1XOYDAqKyu5XG5xcbGqctUTy8vL+Xx+SUkJi8ViMBgMBkP1xdBjOxlCqEOd5a+qp6nqfMlkMiqVKpVKVT1NNput6sbSaDRVD5HBYPD5fAAQiUSqzpdcLi8vL1d1PxsaGlSdL5lMVlxcrOrEcbncmpoaVeUFBQWqymtra1V9W6lUWlRU1Hnlqh5iQ0NDVVWVqp6ioiJV5RwOR9VxlkqlnVdeVVWl6n42NTWVl5erKm+5CRyfz1f1yjupXFVPTU2Nqm8rlUqLi4tlMpnqKEFVuVAoVHX5WypX9ZFbKqfRaKrK2Wy2Kh+lUimVSlVVzmQyVX1biUSiWbmqb6tZeWlpqVgsVvWRVb1ymUxWWFioqpzFYtXV1SmVOHcOId3D8V+EENINzF+EENINzF+EENINzF+EENINzF+EENINzN+XQ6mQiIRimRIAZE18vgh/og0hpA3z96VgF8S5XbAMzqoHgGzPLevNvPJrRF0+CyH0WsH8ffH4Obcox/Z7Zbbe2DPPd+N2Q8fc9r/uhBB6jWH+vmjch5RZKw1D89r+sBAv1nrN3pMhxV3+3BBC6LWB+ftice4aL5i2LaL9rxIJKx9abPv1ZEC2UAetQgi9inpt/rLvuwWl84U9cl6roeB2ZAKtsqnLgrUxlpM+X+vLk7RfpFQI0oNPbl1nmFr9ElqIEOqFemv+KnJ89lyMYgl64iZeyop4W3ef1PKueq4K6oVfZvx8LEzxhJsrsHIjtq/8iRKc1XWQI4ReA70yf+VNvBiH9Qanr/ZA/iqkwseBxr8fNOwyf8XZfsunzD8ZXfbEe9twqc57Vq8y9K9oxHuPIYR6W/6KSpM8PDwumu794at/fzR763nXKx4eHh4eAdHJxY3aZZvoj+/d8FC71+GZLxE3935YcxEPv4js/Ow0Zss8sepHHh4ebvamK78b+p9v9Y1sL3l4eHh4eAWHZnf0o/PSnIBjU0Yv9SxgPvneYtwE591zfjmZTm/XWITQ66eX5a8w77a5ubm5+dG1U7/+4vtVJ0lTc3Nzc3MHv9BsnkYxmYCVeM3qxJHTJqS5ubm5ufnva5YcvOidytIoIxVw7l4+fuQkaaQqYv7H98NmLl+79nZZc4myGHNzc3PzU9uWTxs5atauI8bm5ubm5mcuXrlf20HTGu5f2j1+4e7kCl4HC9UE6X7Hp8zbHJpfi/d/RAj1svxtVuG3Z+ncHU8Yf1DIi26Y6i/f6ZFS0by8JtJx7+zxay+mMlpK1T302mlw8E4pu7mKuiRPi/Xzfrxwv75tddx7LnuWGnQ5/lAXYfH7V4uO5zAanlxGkO53fMrU1f5ZDLweDiH0D8xfuaSQ1B+zyj5J86JffuWjgz99udEkrKXryogxXTX7WLLGUIJCwk694+gdp3WZxFPmLz/Reee4VZi/CKGn9Q/MX2lTyMaPvz51u1KmgUfPPj6HmLD25IPmHnA9I3bb6H7frDyYUC6TyWRPmrTw1PnbeN9t9/ipm+6UsJ5cRvDI9/iUVfuSijsaQEYIvWb+gfkrybEa/8bAoZ9/Pbad1YcdczR6txxawulfx479evi7g94wsLmfk5fPqJe2q+8p8xcqIi1njZjrkFH5xCSXVd82/2PpprN5NeKnfqUIoX+sf2b+Tv14lFEY82krq89yOfLXujVr5k0evvR0QGGtVjg+bf4CM37P3Dl/Xnn8pK60mP6A3LRkm+NdVgfXZyCEXjv/kPzl0+m0YvUUM2n1jdWj/rfNNUPrMofG6moaldoyOkuNulbQdqi2LNJu7bK5R3xz296pTDt/RTwe7fHjjkYQOPFmG76df4bacQDLypLdtq5Y65VWi7/8jhCCXpu/rDDK2vG/2TH5qp6k4HFSdERklqrjqpRxgg//NPGX46k1Gs8QcdNDPb1iqS2hHElZuje4RLNSZRPnlvXWTbZxbSdANKb7n/x5+Z5YqipyFYyyJL8r8R3O4BUxbm3+cvKWW1XtF8mb2MFn/9hi6FuBN4BACAFAr81fOT3M7Ltv5jk84gBAQyU18JJNKqPlqF7JpyUYrhk3ZcuZtOa0S3TasoESWKJxv4iY098NGTnfyPdRS5JyHzn+OnvJpQeCtpMTFKxH/r/OnnXYL0MgB7lEFGZ34E7Rk27m21Trv2/IRycetVtQl3p+04LdIUUCnPmAEFLppfkLoFSk2Mz5z5D+/fv3/2j0NI8srWN+paI+13nn3Pf79VcZYxQvb1ukxGfX5OWHtugP79/s3Y+WBVTIle0HD5TKXL99337ar3///oPfesc86clzJQBAqSiwmf7Frx5tb7NTbL3oc4cHnT4RIfSa6bX5+2oLPj39hH8Gr0kOAE2cCr8DI/8KqNR1oxBCrxbM35dCxKu65X46PL8BAAquHzweUq7rFiGEXjmYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuYvwghpBuERII/hoMQQjpAVFdXy2T4gzgIIdTTiKamprKyMl0343UkF/GTA60DMniqf2akBvzs4bEk8LZPJf5CEWpDoZAHR3v87OGxLiots4Of6Fa7e26dSzK7JxuGnhMBADKZLD8/X9ctee1kXlz3t39+o1gBAABVJ+0tCZLsY2wxMygp60k/b4ReS1IZdZ2JEUGS/Uzsdz0s5z3hN6w4JQ9sj624ksrp2dah7lOff1MqlUVFRQqFQret0QWlTCTl14tFPfm7bAppju3Cz9ZcYWg8Vv7Q999mJgRpNuVaXHrTE5/aWodc1igW8UQi4Svwi3JKpVwgEmXnJ813cLEsrRP34JqlUkm9SMRrEtxPDx5uZL8lqbC259beQ5QK+Z2Ii/8yoRBGZ/94UMp94jsuLbt/+fTBw/Gl0tfwk9wbtc5/EIvFVVVVUukTj27+mWT8Gye8P/6XzaEYQU+tUspOsZ07yqj9b3Qy030Iytml4dnVHTxLizw7K3rqWZIgyaWPOvwt5h7VKCz8++KFTyxNCCPXns3fptjEW3Pc3aZcuvSVtSlBOvwj8xcAFE3cK6EuhJmbRSGzs2/nJsadM4d2nPIu5L1mH+Teqc38M6FQWFNT83rNiBDWuWx3/88b5r94PN/AmVRUQeex6rvuizYxEk8smb0juEh7AZ9+ysf2HQdv2/L6p1ifKPHBnXHmJEGSI6I7+Ln7l0P4uCDXPb+6ocNlvKrTvjY9nr9qCpkk4LbDPzd/lUz649Wudl/6xSTxuhicEpZFHdiwyT6qSIZ94Fee9vxfgUDAZDJfpxkRsrJUqqtDemrN8x3Gs6t9AjITC7tMHs69s39OX2yW1djmS66+Os8oyGWgvZ9tNp31dCvksen+j5Ktk5Mj2T31q8ri0v0XbPudjyvraCHm78vDLEra6Ok86mp4UCXnKQ7T6qNNVs3ZerG8R8fUUHd0cP1FWVmZSIQngJ4NJ4dKMY++22X+1iQfNVi02TlZKGsTmqKGmuhiWgSd+ypvd25Z0jQ7iz6Yvz2ugV1+p6j0IavxKccUGhJtJn5jcKnwKU4jIJ3qffnLK+XEheR2echdm0ndeyI8PPcpugvU7OW7knM7Oo0lbqj1OZla2FUFEg7v0m7nkfqhXeZvZZzjkjEzLRNoL2KIh+sfFjDBLviuvIPjTLGo0SnQdVt8PqP9sm6urXiv7/k3KMYE5u+LJuLX2N9yG37pZhCT/2K6rJKHpyaPnmuX80IqQy9Pr8rf0pRpg0z697VetP0RLStj/mS7QYNMBw0yHzMtJl2iUKg7lCU7BpkMGmQ64A1K38lBgekNcqk8z9Zl0ECTN/rZrj6RU9Xc72SVpi9Vlexv3Gfs7fRGrSEX+rFhVgP6m46eHvdYyvE74Kc3yHTQINO3hrh6FMsVLZ3Xe1GDBpmqV9eXMmCgqeqfeuOiMzp4AYJ0v+NTpq25ls14no/ZJT+TQaamA00ofUmSMPK+pZ2/FX+fsRhAMSbIs0tCk13iAr60NBlkajqQYjzEzsWcWi9/xuGKClrkOBN1DX1IkjCmDDQ1HWRqOsjUdG7E45LmPlZz/rqYFqftsrZ8w8R0kKnJGxTjz7wi77HEbdapVErlHFcfu34mpoNMTQeamPSzvmJNZTYquj+Q0mX+KhRyETPuG5J8w8R0kKnpAIpxH68knljadmso5XJZbKRjX/VrNOlnTH7r6EgYG/dRzUtRz8xWSiUiv1sOrcVI8rvz5wlj4z6kxbw7aS3fwkqFJK/o/iIb4wGmpoNMTQcYkx953i+Vy5tXynO5aqV6K/uRJGHje4XOFlBvE8YmAyjGBGm5OCKjpJtfZTW+f34z6I/rPTUyhbqpV+UvgKRRYLvC+quxl+dsC72d1yAHUEilEWYek+cE+KeLNRJU/Oha1ORpgV6Rhe57vX735kq53Itbz32+MPSudtdTGGnm/9nU9vkLAJBm4vzx517rtgaZ+tBVl0ncPW0/apRfUKlWfoof+kcuW9Bl/7fhgefhyQZ7k4q53XnxbZVR7812MO4ofwEA7kU5ESRJUMw+tHe3KGSJlcChhn9sQb7n7H+1vKF7J2Yy04K+OEN20f8lScLcZqyzfwAPQFzvH+P9jik53P9+WVPz5lXKWGUP5lyw/eDcBbMyAABWbfFhr7NvmZA/RxZxuxsYneevVMT3CnEgSNMxHtcCawFAlPQgfLqdaR8jB5MifuvlLhKG4UWzfhSrBSEZJQAgpFv4uwwyNn7j3IU55y+uDL33gA8AAGL6HgejAab2v0bnVQJAY8lR93MESQ45d2H2hYvr7z7KVx10yRojoq8MNrdeGvEguxEAICXO7TNL8r9OV1zKmjT2QkUVI3utnRFh5b7qis2njhdmxhY/uO8zkCQHuN6KrOnexTg1vn9+M2iqeWm3nox6DMFtxuerdq5XOn/lwiavXU6jFkfElrfuwMKqanK508qT2RWtrZYVRCbNneG2Y0/UrQIBAICoKS0g/oRjXrvo6zx/L/z7S2+bJF7LI+LGnI3DzlMitKYAPGX+chMu7B4378XkL6f84RJny07z1/QT12DvKp5qS0nEAisPI+KMq2FWVfc+00+Xv2fGhz/mNE8/pZc+Wu5EEvY34hvU700Tr5z0d3zTzMWugt/y3JqSlPlOZoSRszOvm+fsO81fcVryjWEWlP9cuHNPYziqMCPgIwr5ro1/YPNULSEt4m0zyjvW/mEtG6j6/khL08EWzu51rU9szAsmSOPPnW/Ft4yvVsb+hyT/6+B5XePSB0bu9c+MzSb7J2Rr7BThd2wI0nLOrdQCjQBm15X+5WpEkOS/HdzsSppAqaikZxwICtqXlEPraLd8Cpi/vQNR04zDUe87r3z+Xlq8M6Nc89FG3rWTniOXRCaWtOzUsoLIpLmjHfa6V9R3MdTaef5eHP1jvOYo2vPlryDd7/iUeX+E5tc+/4HhU+Tv2WVhmRXNj/RQ/rYd/22Xv7I8auLPVuR/3KMzGjTemPqiXR7n3iDJ8XE13WpaZ/kr5BXudXcYZHRma37b1y0q3WVL6W9uvTaxQrWATw1725TyjnVAVMvuX5P6jaXpYAsnV4128bIDCdJ4uPOdpJbXyUj4mCSHOlz1b528wrW9QPa3sNl0v1LzLFhVXsj7JDn0cvCN6taPWHP+2vyaWsx/1uGhjtX4/vnNoGWuvK5LIl3qZeMPHeevXBh34ebI74PvZLdciSAriEyau/Ca94P6rjpUPZm/8sI7Fj+Pm3c+tez55/f1yvyVC+6m3PgfSQ6xdV7g67/i2jX1n8+VkdYW/UiSuJ7XraZ1lr/l1ISZ9hTC6JxtndaTpIH+JoSxxdSAB+p+orDOxMvsDRObtVH5lQAAvJt3vIZQjN/xTqnUnHkgqDlymRxs4bQjqagGAIDtG+BKkMYjbqQzW97XxuxFJNnPxOyrS96tL/PatUXu54aQJOHk51ramo3q/LX0vEjnvKCrJgod5o4abZj4YipDL80/In+hKely6Dft89cgMDC9w2sFNPVk/oK08M7vPy/8OzBH9Nxz43tl/soawhOvfUySw31jYiprClisfBYrn8UqaPlvQzfPN3WSv7S8mB9syY7yFyKCTQjSfLJ3UkHzI4KcAII0HmRm/T8np6+dHIaamYy9lVXYqH0MVZvuRZDGb1qc1XNy+trJ/j8mlIkRtBKBRnhyH/1AkgMtbf5MKctvfpmtf1w+T9p6CkGdvza+HlW8FzPxvtB/zqgZJxJfwDAXeqn+Efkr4t8295+6NDK5tO34w6uXvwBlXlsX/LzHj//cc+NfhfxVArQcLT/d+IMoJSt8AkkS7nepDdqhplnbs+okf9llD+aft+gof7kOLhTC5MxPoTnqYYPy2H+bmQz1SKnsvCXFYYSxydjADGZnxUp3GJOEhY3B/cr2y7Se9cLzN+vq5hE/788QvE4XsvZOvTJ/F2x7VKIRX9KaatvNl2bvTaO2nv3o6fxND4zWX3g7skC93RpquDcvPCzraH3s+06zvlzpXPy8N6nSef5K6/I3XXFcl1rVpAB46vHfkpLUpfYmhI2PZzVfo245tyjha3u7o8Uv4fxbU5V1gOvbFHJ8WLnmCxcKcn41Mf6X1XljWvNhE+PBdxdsBpEkQVrNCrp3t64ur64ur64un8Wq1vy+rLg30sFqIEkSpM3yiLR7zcUK2Jw6cUv7+Z6eloSJ5fSbjzRvhiMXc31CL38XGJumsQe92PyVN+U6/rbkgGu6GC9/e+X1xvx1GjE90D2Ro+o/yaW8YPOQWd9cu3iPrdH5lObcjp8x/3nzN+6oQ/v8Xfex09EQrSM7eUVy+sql3g4RdRIFAEBeYsqVkCclbEXIzoXjNgY852UC3cxf84uHMyq63CgdKs8JG2ltQtgGxAhAJhHGpN7+4aKfd/MlA53lr1VAKL95jxKyrkT7DrWgfO5zN7CqAQBAIS5j5ux1u/itf0pld6cAdz7/jFv5eK3rGcLI3aqIXi0FAKjnVNldt+9vbDHnxuPi5mLsutLgBzdGWTkvDghY1fw3w8Gkn4nZoqgcavMeUsek+SZdH2vrskSj2A+25EBLm18TqGUtF/JUpf54zvwt2wtb7xeVC6UAAGJ28MM7M2wuk7ma08qUtTWFWy68oPyVCfKD7TfsMIsr5+Hk31dfb8zfC19867n7RDRJJlAoCadPB86ZffvqDUZzInJvUxIolJjtv1z+8GPntTujKJQEintF+1vaCLnVvpQECuXub3Oc3hnmuvNUHIWS6Opd0XwGuz7aJmn1eOOhn3kcdc/PY8oAgJeRbXQy4Os3z4xffvdWMlvz0joJi+NpGKC/Pvi4UQKFkuDsllXQScjREw8brPnLr+svhw49ykmgJCQcv+k34qwpQZ5bHxdPSbjnnFlUoT7crI9IStzibkWQ5iPdrpnmlteIFdBU6RITPd+BJMgzk32C3cq53RmAbqi6EO7Z39h4RnDCqYibizwu70wpqhErAEAsYXpF3P7J0YIgbeaGhF0srQelora20CzE72srkiDtV0TeDW++wZGQW3kl9c6PZ8z7OgdREhIoMWEGV68aBEaH1gmfPTIk+YUZVvcSjONi17ieIcgz33rdOJqQQElICGt7P6XyotRTAeffsnRaH5VASUjY5ev87gXP43dTW2/1KWE75tg8IAAAIABJREFUXz8/0Nhpx2O6Zs+8hJq4wokcaON8NJcDACCuPeNh1d/E5WhuteZ956i5MQvPkf9y9LAtat3XimnJWwMuf2R1fuXNSEpCAiXca4S9t2k6tUz9TokePU6iJMQfuu0/2oIkLBxX3I40TkiwTCrsYMziqSi4xXftD+29eKewm/PWUM8iytvJy8t7tfP30uKdDx8U0G8H5vj65vj650XlaSZh4wPfHF+tv6ja9pchixs5cdolc8Nj65o/e8KMG3mqx29E0Su4cgAQFJc1lyxMzeNrbaOGqtq7t9RVZXfVuW2kxR35bfb5bt0qu6g8xzdH6y83tJRRp/7ICdLzclsW3Sqv5UoVIGZFapSPr22UdO9AX1BzLVddSXBJZVXzUblUxk3QqD+CKQClgseruqXx4KM23zbC7MKC1vYXlFIbxd1qkYxeVRyY236D5DzktyvLp7cpU8ZqM9erLnPBees+Rm6+7W7n6X/NiLBy2pbOBABgpn5jbT7Q1DOk7S6lVCrOexsRdu5knuYNlBRcfo3mlg8pY2tMR5PQSvLatzwgr+op78GkRcyvvm77+1nfeyz8BZVegmjqiFL5ih67SBoEtits2s1/6JXqCuJtDdd6pOGvFbwapMLAsIuDKaZfXvL0ZrY82nD9pvvnlhQ9l/C4JikAgFRw9cbZPsZm472CQlpP6NV7XHP+xMJ8ok/8A5HOep53TGad8L7PEmDXt9foVb8/X5oydQClX1+yb1/KGzPvxBT09m95pUIulT/HTQ/Qi6VUKCS1iRONjPpRTAaYqP/6G5PzkmqlitYuiUIh51fGjCXJ/m2KUX5NY2kW63m4O/U6vSp/EULoHwTzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzFyGEdAPzt3fgpnmecAmu5ElBqQw4MdU8qkbXLUIIPS8ip52srCyRSNT50+RiSX2DVKbsmUb+YyhlEonkGTebUiFnPb5pZueQVCpQPSJgFpw7tvRifJVM8TIaiRDqIR30f8vKyp6YvwoFl16blET3POnz2Yxbjxpl3V6xXCItz6UnJbX8sfndrqs3kIlr85LuupNWLoGJ3Gd4npJfnGzy1w6rsLym1gel9DQvyuFjoVk8KUYwQr3WM+avRJJ9O3ntwkufvEMSY253O3+VSt4dq7iF31tPnBewdWvQT19a9CFcja5VsrpXXW8gYCefWblg5NCxe12fIX8VMtYdiz/2k1F1WgvEtTHnDP84djmX08WRCkLolfWM+QsAAKVRyfNGPFf+1sTe+nKA+derYu6WNAHwPTee69uH/OjLiPTuVddL1NPi9s+d+Uz5WxV1esn0DUFlgvaLRNXxx9b+YnmnWIGjQAj1TjrJ3wZPAzPiHdsVDuVSAAAZI6s8PLwoNoH1zx6CEJSlHF+29FnyN9t09NBlJikNHS8Vxlsun7zOthyHgRHqnXSSv5yzU4yId+1Wu1R16+m91TPnbwrl/wZOdaM9cSNLHjiO/XK+U2H3R+ERQjr0dPmrVEhEMqFQqvrLv504p+P8VcrE0pZiwiaZTPPYWKmUSWRNQqlQWGvxnRHxf3YrHCuaC8vk3Wu+XCps0SSWSMSyDo7GFRKNIvL2BZRyiaiptR5Rm0qUCqlIKBQKhfes5/xnm4f6IYmqvFimVD6pqiaRdmNa81cpF7eUkkifMICgjD02fMCbe5I7e/2ZJhP+N+VMbiclFNmeP47+gJhoRMNhCoReMURr7DRnrlb+ygTConspS/53ZugXLpMmuYwd6fTFx2fefbdd/jYJqXlFx6db/Pcr10mTXMeNtH/nf5dPXSmgsZujVcAJNL81e5LrpEkXhr1JEv1N/u8zp0mTXCdNcp00KTxR/szxIKgpfOx1bOwklXF64/VXz59lklCpWUbKq8rO9N07RlXmmx9WbL8UmFErlDQvVwg5lfkxl7YtnDP5W1WZiaPmrjX1SeIIJUoAABn9sefWSZMmTRo97O1/9f3VQ6kQlqbesdyzZPzIT4cMnm6eUta6oRpZtATHFd9NUdUzZb6BiW86WyBtbXBZyvFlS3eeDUiKdlk/fdqkSZMmjpu8cJ1hGJUr6WAIgXF55SeDFroyO9sGTK+NI/ttCJA8uUTxjUPjh71BvDnH5/U62ECoFyAqmjGZ6k96m/wVCVM8Iyd8bvbpZB+XR3IARV1RKWWNy0dvt81fiTDPP3rcMJtvFlz3zgUA4BSWUdY7vfcvcuq2vGrtlb6I8QcR03//qoUn/Gub60zzs1o56r/LnbJay/DpIRbbZy8/HK5+ZfWZIWeXDZ+11SO5uWdan3xp34S3x54ILZCo819SHuO0eOZy+7hiSZtvhJJLq78bstGjPNHN2vh4SHZ9w0P3+eOHzjS/r17exE66cnj+okUHvDKVSgAQU6Pt5k6cZXkzV9TyBVSWcnzZjz+v/n3zDqdUgRgAJBzqhb8WG+y9VMhtP4ZQZP/TR4P/iux0KzC9No7sN9W6rJMilcmmx3dvPB1S20kZhJAudD7+oGDn5G2bbk28d8EknNPSQ20//svLz9856+zAoR6+ReKWetj3kmd8bU4Q5xxoWmt4EflbF7t32m8XcjkaDwkLgw0326Y0/1NcHm49c9GWa5mac7e44af0P5lwIEeiCkVhaWqoi7l3GoPX2gEtj9m5ePFf3hnCNmMidUH7p78zYYnded881VlCTuF1j/MhmaqxXBkrM3Dzwhm7L9/jqfuicnqq5y9ff7XDOZ7dHK2CspTjy6YsOuFT0XrcwI5z2rVkxemHFcJ2r7Dw7A8vIn8RQq+qTvNXJkr1DB092OjDRXcfVbUGa7v8FT/wiJw8hBy2+n5Fg0ZoVRX+Oc3+DYL82pTRdg0vIn/FxS4bZ02atdAtU+NBUXV+WX3zP2rDzTb9tPFsMavNWHam2696//noZEoHh+zxtgYGBgYG834Y/t9vOs7fr9dEdtiNlPKS3ff8+PMfwZms5hxXCNilKZGxufT/b+/M45o48z8+veyx3bau222391pbW8u2ttVqbWu1eGMr1CNtPait2mrtpfZnrW4Z7lNuIig3eCNRERFRBFQw3OFMSCCE3OS+j0kyvz8SIEA4tQb0+359/tCZJ995MknemTzzzCDtHoBwdP5tEP9yk1Y+99BnyYPOieZnrH/tPsKR/g8GAGDsM6h/1arTXqkPIOgr665RhT0/kPv6VyfP9j76DIJOeCJsyisxU6d2ZUr4xId970HQv/1I672FWzL/waQUsjI2/2vic1OnTp265Js/rrF7r1fTErcvefbxf02e8upUO156+rEH7kO+PdPzdUIj/bF0ztSpU6dO35FGpVKphalffrzQsX/XJhpxR6i4J/ctnvHln2TOYFPBRuhf7OKulx6c+Ct5sJ1QH/je5Hf8awdrAgDAWGVw/yqz9yUjQ/pXI8v68/DTCDptW41EM5y5qLd0/plZ33Dy11fvu+++e+99fVMCu+v3P65sTti28P2vY5iSQc5OqcozfnvvqXs9Im5ou5/fIOMPG9Mcl1Fyjv++4N21aEW/oW57RuhfHC/aO+GhjzNYAxa01Bx8a/InYY2OvxQAABjj9PUvhmEdHR16vR7HcdyoLYnPnox4vUAoaRL0fMj7jT9oiuPP/fd+FFlU2KHofR5Jq6E2d/JUfTZyC/yrl4skKq39zC1p5ZF18ye/uSPHpls1I3WH26wvQ6iivnOZNZ2dSosFx3ElvXjn0hdcvg5vFvYcDo/GvwZxYew3sxf8kN8s773CpJLKtUbbPhmxf/Hy3c89sTqSMtDF4KWRq/7r7seA6y8AYHzSy79Go5HP52s03S7AWi6XLv23L+JyglSrsrkOM1RkXHzvGRR5/lSxzbYY83KZ2+sByHOpcWT7S9j0LSm5/37xQDQF780t8C+DtH9P+gWZrpd6pPl/vrjIn277n5ZK8p4zx414o/fos6wtPTihCjPhOC6sy/l21sQVXlls++t7u/0rZ9Qwur86BvUvrqXmRyya4x55gaq365FB0nAiLbuOK7fuupH7F2/P/mbWtC25fAcGNohLvb9wR7NoQ8zck7cXXjh7vKDRwSXMAAA4lR7/YhgmEAhUql4HqwaJKGlX2r8fCZzzRVmT0YKbMfaN6m8/jPobgiJI1JrfLxe04TiO4zLJcb8Tz/7D95n5Z4IvSHAcx/Uq8pmrHlNiF/zeaD9HAcfxW+LfzsL9c9w+3xl9qcdlGtbFAM/5O3N6NiduTvy/Tz/84pekMtsyLafmaGxAYF6T9SoMNfuGL+HVN97/+TxdasZxHMdErVeTfvWc+eqsHzKrNeUBvx7vLt+esnb2YxsG8i9uEDcn/Pr54s93nGmW2mzLbz4avy8hr1rWdWwtoxX+vOCj/v79cPGuawzHl16bDA1xhCUbg0v6XjJnkFw/5L1hR1y1cIhzb8JLATMnP4o8s+7iSO66BgDAbcDmX4vFwmaz7Y58uzFLmLwTXkef+0fEh6tOEFYfc52XOPPdA1OeQWesL04/3FDbNR9AL+gsyC1Z/rj/hFdTCISThM8z3n4v7Ue/6lq7gWNeed2+7ScJhMPTJ6HIBP/nZ6QTCCcJhNzMKtVIr77QVyXPW7Ju+1aCG6EL9zVb90Zeoff6/tBx684l/vj+9GXWJh6bfwlMv8xRdhkRU7dTTv06z/XjBW6rCQQCYe3W7WFpx5L3rV30wfxFKzf+74IA4zef9SIQCISlbz898f4XZxEIBMKGbWGnavsdTmLi1qr8iB0LPyesIRAIBMLaTVv9MvPbxbbbRqpEReiSuZMnPf7KjE9+SrmuNZrNelVJ0vb570x5/J9T5i31uSpzZFKLWVh5ZsfWn4lFdLtjYIxfezJg128nbwj0Q409yK9Fzn7lCeTl76/3HQUCAMDJ2PxLo9FsY76OwJQqWpOQQhFQKAJKg7iVKaVTBUxR/wtnjbzGrmYUAaVZJtH0+nGsV6jozYKeBraIeIqRX36sk7WyhDJhK6WHZnaf7VkxSOndTVpYMo2x72p2W6NtdX1Lq0iPm1SdrOYGCoUuNOAWvbqTQelNfVO7UOm4x1oJrbnB2qqB1ipW93z3mAzStq4CNK7MZMEtZpOUQ+taxpQNcA22BdM3XiDu8vYmd9gEremkH/JeHZdH7ftUBthRDFoThS4c5CwkAABOAcFxvLm52WKBuwOMYSwWKumPb3yJLKkBt1jSf576x1kO3HYSAMY7CIvFMhjg2AgAAOB2gzga8wUAAAD+cuDvHwMAADgH8C8AAIBzAP8CAAA4B/AvAACAcxjMvywWS6/XG41GFoslk8nMZrNCoWAymQaDQa/Xt7a2qlQqs9kskUjYbLbRaNTpdDQaTavVmkwmoVDI5/MxDNNqtc3NzTqdzmg0crlckUhkMpk0Gg2dTtfr9QaDob29XS6X9ynOYDDUarW1OIfDsRanUqlardZ6nZ5AILAWp1Kp1uIcDkcsFptMJrVazWAw+hSXy+Xt7e32xU0mk1gsHn5xiURiNpvtizOZTIVC0ac4nU7XaDQmk0kkEnG5XGvx5uZma3E+ny8UCk0mk1arpdFo1uJsNttaXKVStba29ikuk8lYLJbRaOxfHMMwnU7X1NQ0eHGpVNpd3GAwGAyGtrY2oxHu2gMATmYw/+p0Og6Hw+PxZDIZj8cTCoUcDkcul3O5XC6Xq1Ao2Gy2QCDg8/kSiYTH43E4HLVa3dHRwefzOzs7RSIRn8+3XlbHZrN5PJ5YLLbaraOjQ6lUcjgcLpcrk8m4XK5QKORyud3FlUrl4MU7OzutxdVqtbW4RCIZvLj13xwOR6lUdnR0WBtbi3fXsS/e0dGhVqute0AikfD5fIFAwGazlUqltZPW3nYXt3bSvrhYLLYWt+4BPp8vEokGL65QKLqLczgcoVDYvf85HI5KpbIvbr97rcWFQqF1D6hUKmtxqVRq9XKf4jDjGwCcDoKbVQPFYlJqlAK5lGMxKU1GOY/TYjLKLSalUsZVKfjWhQIew2yUWzCFTMLWqjtxs9Kol4qETDOmMGMKcWe7QSfBzSqdRiQVscyYwmyUC/mtJoPMYlKqlQJFv+IKR8Wl4o60tOSIiIjY2Jie4kJmT3Fxh604j2EydhWXcW3F2bTu4mqlwGJSmowyIY9hNsrNmEIq7tBpRLhZZdBJxF3FRUKmUS/BzUqtulMq7rBgCrNRLuAxrHVUCn5P8e6eSzm24gaZkN9qKy5i9RTvbO8q3mbUS3GTUqvulEnY/Ysr5bw+xeVSjsa+OCY3YwqJiKW3FteKu4t3Ctowa3GV0FrcZJTzufSu4jxr8UFedwgEcnuC4Eb2uMiHH8xEEORfT/7T6T2BQCCQWxLwLwQCgTgn4F8IBAJxTsC/EAgE4pyAfyEQCMQ5Af/+JTGrqPTKUw0dDNzI5pMTTlfWOb1LEAhkrAX8+5eEluMVlpJcz2LgRjavjOi3e9WhElAwBALpFfDvrQ/n+LfLN+29wWV0LxHXR/+xfimpscPpfYNAIGMn4N9bHWb88olrTgtopl7L21tP//DF8h1lAmd3DwKBjJmMW/8a2vWadovhtmzdwDJqmGb90EevFs2Ng6unzI8s6b8Kk1Sn7HbbGHJEqnf+zoRAIGMh49a/rMzApGyprP12bF14IeNYWh29ZaiWjKbEb95w2XRNx3K0tpV64c8t7mtz61vMzt6ZEAhkLGS8+ldW5L0lPEl0W/yrrkvxjfC/MaR/xee83OasDs02D3BUrqRm7fpi7o5Eklzn/P0JgUCcnnHpXx3rUuwPs+ftCL8N/jWKK7P9Viz45sch/Ssq9l/y5tyg4huWgdooyo78/rn71qAWAdPp+xMCgTg948y/EyZMcFvquujD/z47ccKjL0xbuOgTt6Wubkvd9+0/yu/7kPqylD++WerqttTVbalryIUaB2VFpafCN7t1tVm9i0g6HEgRda2tDHFb6rpk/nuvPv3ww0+99MG8eW5LXd2WLtz8E5HpoIf0yuTNM97+NKuxZkD/GpvLErfMXfn9jZYmp+9PCATi9Iwz/06aNLGVdr2Vmh217sMPv9xXWVPSSrveSivjcamYXWODoDTx58WEX/xLaq630q63UsPWPDl19XfRbXZtdEJy1Lb3t4YcolCtbSI9Hnpi2gfzTzZ0nWdT1LXSrrfS8o75rHZd4JldeLmVdr2Vdr2jvdHgoIfU0vivp3t8X8NsHvhZtFRlbJ/94Yqs6koYAoZAIOPMv13jvzeOblu4cMsA4w/6topwj3c/21ku7FnIowQvnjzjj5NF3Qen3It7NizzaTb0zGpQcUl/fP5eREFt74INJcSNn3425PhDVc4+j5ddt9e3Uwdu01KVsX327OXHqipMg5WCQCB3Re5A/2Kq8z+//9LG5Mv2C1Wswr0LnvbYEdOusS3hF/+55oOVh8sr1F1LcF1LW1XqhbKG3gWH6V9qafzX092/q2IOMrbQUpWxffZH7qdqquD4FwKB3IH+NXKjPp349Oc7/Q+nx3QnOXqvuwvyNuFHMsvWTCO8HPPN7PlLXL0iYw6nx5S1tg2w6WH6l1GVumXGdLcTDYOM/zaVHtz88cqtZPogYxQQCORuyR3oX0PNHzMemzR/3TZf79/65NDJE1xpT0sNpyTn0G++v62e8fRj0z//zst7z7na/mYcpn/ZkqtBy96aG3ClbED/ykoz/s/DY3sIXQjzHyAQyB3q3/effcXrbPVwi6tqqi6knzqeEPDlK2+6b86p6TOAMFz/4tLzvsvnfB6YNdD8X0XzyR2Ej35LOaOA+b8QCOSO8a+gPK+kKFtiZONGNiY5s+3dZ1b7H5P3riCiFJbkHxV2/fdy8LeXuL0uKVYyzgd/v2BzDEnZ64F9/atsryg5cbDDQSfbWtI2T3v16yKtw+vfGM15e7e4b8hvYgw8QAGBQO6ijFP/NhaGrHz1i91ckfUeY43XitLzc6/bGuuZ1VFLp3y8IpdqV0FadeXIvoTinptAXg74ZHlUbq+tqBoLojdtCD3eW9z0uqzf5nqsvVBLwY1s3NjObElPSbzouJ+GC+gbz80JLuq/CpNUJ+5csjH8pNzhAyEQyN2XcepftuR6hMd7M39Kz26kFFZcOnLkYFCDuKexQVCWuuODdz7dkJGT20gpbKQUpvzPY3PYCZldwRKvmQ8/O/1b/1gy5bK1TWnmtjXLCeepfTetajy287MPNgTEllcX1lfmHw386Rp/4HvxkP1e/feqo20NWK/lbdTjW9at2lMhHOw5QiCQuyrj1b+4kU0/vcPzi2UrPZZ9s/2HK4x+D1FUXDyw09Nj2UqPZSs9lv18uLBPA8GVkN1BkXF+61Z2tVn/9Z6B7g/JLt7/26ZlKz2WrSF4nGoY4kZovNM/uq3bWsKi92yrInD3xpW5/cwOgUDu5oxj/47llB/e7hsZWNlGx41sdlHo//Z4Hr7R8JduEQKBjLuAf/+SYMpmavnxFm4rbmSLajMK6hqd3iUIBDLWAv6FQCAQ5wT8C4FAIM4J+BcCgUCcE/AvBAKBOCfgXwgEAnFOwL8QCATinIB/IRAIxDkB/0IgEIhzguAAAACAMwD/AgAAOAfwLwAAgHMA/wIAADgHRK1WO7sPAAAAdyNIe3u7wWBwdjcAAADuOhAcx1taWjAMc3ZP7jr04vasyO1xJSIcx3HcnHcmFEHRR8MPeDVKMYuT+waMKcwm/f40LwRFn005d0GgHejdcfK3/+4+SdUZzbe1c8BNYBv/ZTAYWq3WuV25q9Dx6lP+XBt0pbNrgTD84H4ERRHUf9axK5Xj86XQ65QNXD4bBDASzGYTW8BukKj0A7fBsLbvw/wQFEW8QjfeaJWYHDfTydgZ/mvCSTWKQWoBYwmbfy0WC5fLValUzu2NM8DY1YwjyfU1otsoDTUj7etVX8QUS+2WiVpLPVMjETTwo6xr9cMYEFLIeDl1lQmVlcVS5x8tG4ziC5WVgXlZb4YkBLV1wsd/eKhKa6vjblz/PCbU7Vx1+8DtLBZzTU3efGIo4hX5Q1W7fMC3qknUfC5s1y/pV1iaARwNjCl65j9gGCYQCJRKpRN74wQ0osStKU8+EPjlYcnt2qSyOmnLJytTO/qtYJQmIwERa4roiqGL6K+X504PQBEUdbnM+ws6OTL0xs6ThRcWxwUiXgfBv8NGWVxR/ktaKIIO4V8cxzGN+MDpWGR/Rnyb2DhIO6O86kjwhh/DrnMUzv9aBoai1/wzo9HI5/PvrhkRRvnJ3ZnPPBz2c/7NHftr5WVkVgtnsI+GFVl1+soZ7mEUYd8VXPL7UUEvHMjJGdavR6y29uLsUBRB0SXkYej61iA+kktamkMROFqnkXH+PLIf/DtSSgtih/avxUyry5saGrHgfEWzfohTNUZFVain+550ih4Ogcc8fef/mkwmFoul1989nyCLTqHhcVQKw80dLgg4yZmVhbQh91vHiZ9WzN+cItT2+hTxmy5Ojwx6NOFylVo/tMJxHMdxzKgXKhUdCoVkmA+4eVS0TbFh98ZdYTpaCf4dHcPxL7U07amwiIW5Na164zCkilUmrH/T7Y96zW17ZwCjxMH1F0wmU6fT3f6uDBOL2WLCzEPK0mIy6/TYMBriuNms1ZkcN7RYjHrT0APDFktHae3O33MvDeVfc2v+t4uW/Xy8TncLRpstRsyoNgw0c8ViwIwDPa1Rbc3Marz4epgfAv7FcRzHMcyoMhj1ZstN7uFhHf+OlIb0D16b71txl40ljkPGlX/1qgYyp+BkU0p8dbtW01zPJ5M5ZDK3rlGhsWvURuaQyZzclOJF67KyqpQ4juv4QjKZQybzGWxt9yEBpldTyRwymUM+csll+cUqVR+PGVjVvKuFFG/PonrcJGGJa8gcMplTUdEptj85ppSTyZxr+Y07loU+NftE3Ekmmcwhkzk1FLmjQRwzPS94gYtrdFnbzRyZCMUcModD5jT+kX7gca/Ms32/IPTtXO7VVtr3CaErzlfXKyW1XGt7TqWgk6cb8Y9SvU5O4XDIjdeXJIQhKIpEnTnNsRVskmn0XRu38y+HzueRu9rUihUqB/PpTCIxv7sNmS8S6G5i0p1O1lOqu2/K/l9MWIfAro1A5mAmF6Zq6FNKYD8eZJbKOqu4nBsdrKDj4UhQ/K7qDrVBRbE9X269WK7q9WpYNDpFo121Wnnf76Yu/1ZUy8Q1Xc0q+ULuyF8pO5r2z3v9ba+ym6gA3A7GlX+F9P99deLd50LnehQkpRdt2XZ6vSdpw7rsL5afirnYwbWN3wqTPEmenlluH8X9Y+aprCoJo7gpOTx33RfHZ00J/+S7G41y29ta2dkW5kny9Mxa+HbEo2/n9POv+Oj2HLe3Q19793xmESVyb/5WT5KnJ2nhG1E7U9q53fPDqHWe1s3NjXv+2dhFHqc8PUmenqRfdtczHTwBddXRPbNdPc82Cm7m8LewlORJInmkxj8VgCIO/CvKzDmzJC4QQYPeST+16Vjq3LQja7NJhOSIh0MiPa9SmSM8NS7m1+0mkTxJpE8PRf3dF0WCDqwkkTxJJE8SKYDSLuz6NrL5F41cXXB6YWDY7GMkz6xj78eG/PPA4bAmgdZkpzqdrLClclN8yNRUkieJtOZwyuSI2LX5Vws6daNQsEjAOFqQ9kA8+i6MAAANF0lEQVRIwioSyZNEck+O+6c/iqDotAJOr3YqbmrtVY+owNmHu55LeJp/dU213TFiJ78l89rJKb5+MzNtT3BVcvSDEUci6uhM29PUV9YUbz1DWn/qyLQAFAmK33yZfPxa1lPE1PWpkQjq80IiKUvYY1gup94n77BLaPSCo1mepIzXfLwnZRYWCHt9NZcWxCJo4FtpR1enHZqddPirbNKXyREPBUesK25u04x6Vr7gyKa3HlqVfBfOZxpfjCv/4rhRrTmwPvyldzN+ia6t5+vMOG4xmWpOXP7sk5TQMyK797WBcvrKh65Z0cTrB2NLMso1Jrk87acDU1fklzD72EeT73/sxff7+xfHcbzcl/jE80kbvK5fqJBaldtIyvr4ldRD1X2OYvQVx/JXLBly/EF2NeGn6Ut+usaQDtpsWHAZpYti/Bz5F8dxvORiLIKiiH/EwlOXzwtVmAVXcinLotG/RaVHtQx6An1gastPTQlGhxh/QFEkOmPflYpqLY5j2uKK3DdC0EnJl+q6xyIx1Y3KvLfCwuedLsiX4DiOq5Wi1Avp/wlCp6ZdaxzxeInqxOlDj/uErC7lWEUq6WTG5iQ+7u8zIaNK1t1KJzxyLhXxCltfXFWjxHEcF/JoezLD7vNGF+VQ2bZGysNZBx7yRh8PTc/uOqOpFJYvCvJ7MCA6oK3XlGwMk/sc8kL8Ql+ODJ9zhPS/Oj7Wfv7fKPpITFoEXW5r1Fm/5mDwI6HR64sbW9UYjsuJiX6IT8AsErnV7idUaUEsgqJISMyKM8X5AqXRgmv49cuj0Uci0/ZTxaO9MlVwZNNbD70f0DbKhwO3CaStCw7Hdrwwlv1r0mgztsV/8NW1WnmPRo2dnZEb4xf+XEGTdy/DmvOvLXTZv/o3chXPiOM4jmG8ZlZRpUjW95kN7t8DL7yTc5bdY1W9qn7983E+F/qMrA3Tv4qylJ3vfnpr/Ctpr1h+IGhQ/wbNOl50TWn7HWvQq0PSvJDgg3spHE3/BwyD4fk3ekNlq6pLox1tlR6xKBKZXaS07XeJgLotOfiBkMzDdoeBam7NioQQBA3dxxrhDwMd8/ek6Ae9YuNEdsuUjRvCgyYkXGV1LWltOD89xBeJOFdp980jaTjzoI/3xP2JmbbH6uisthwqNY8h6BE3ztoZEni/f9B3tXbLcNyEGSIzvBAUfTL+aGKrTG/GLXpxEZWax2SztNb9rTpzMhzxCZyZdb2u6wdH/mk/BPV9Lelckd1xaWlBLIIGzThRTFbbOmc06vaneyHBCbtr2KOdigT+HR8g+i667wIx5v17yG1r75MVWsVp3yMvzD2b39QtFqw5/9rCmYlBuQLtEJ/owf0b/8ZHRfV2S27Ov+qqo3tmf/RlVj3v5k+/DcO/YSvO13Y76Db5t/f5t37+1VfWF7zni04+dp1u/+NaxdydEfswij52hj6yPpnlGaSDj/n4Ph0Tv7epex4eJpZJ6fLuKSaSlFNJk7zRtws4vV5jcfksH+97A8NWk/l9y2rF6ZePvRId/Up0+ERv74H9G04orGebHB2zyymL/VAkIOyza6zuIwWNWtIikbQr1Pbvyf7n326Zf9cfhQkQY5xxNv7g2L+49lpS7luzSOfquo8rsOb8awvdbeffBuV2+hdnXgpf8vrc0GuMm/9gjEv/Ysq8q8efRdF7vL3v9/F5oH9ONY2iY0xyxgM+Pvf7+NyLosiB7NMchdF+WoKauSc99mEUvcfb0RaDwj+7bhuBsFjM1KuJCIre6+PzQFiybyNPO/jxr/X8m8M+tRXc5+39UEjk7oYhZmf/Jf61UPzfe+2joJrRPRq4bdwR/rVoihNypn9wJq+h++06Rv2Lc4p/+XTZlqRy7U3f72h8+ld1sTTrRRR96UQZc/QnlxxiEYnp/5dOfDMu6skA33sis3MlXb/ntSyvDOLfUPSty/2Oc+3BtKfy4h/2QSdFJwa1dL++o/Uvq/Dv3qiz/Ksjx81wcYtpHN3rDNw+7gj/quVZXhmzV18u7+j+SDvZv5gO49FFjrbdWeCz4aOV4VT1zR4BO9+/BiWZSSvp1Fh/fw9//GGWL4ok5FX1ucxPK86jNZWP8KJZvaqzgEavV9u9dnphZsHxyX6+D0Sdq7SNqEnTspMneaNIZk1fnSnZWc20Fg2O47i8teTdyAAERddW288aGK1/1dQvgtAJgeGby/n2z9OIqcrpNLJI1f3y/wX+VRWHED5aH87QwU0Nxzrj0b8Jn2wsa+7poEVKp/7kepDg12D3br3N/jXWnb3itvx0Tp3NbFIB9wixUexoe+rWUxvedN1xgTlUx4bA6f6VsmtXJRB/qufrR+Bfs4hb53kwBAkk7qq3v4xZU1l29qWolCThyAbGOxlX50SFf5zf3OvmHXr6dxHB9/skZNpOcxpp1ef+E+yHhKYmcu2nMcjOnYp/Mv7UJQWO43hd5enXQ1AERTdS7HeP1b+BX12lnqipLZXYHj60f3Ft7qkwxMf/neOFVXYthMySD2Lj91AE3bvolvtXyy3as/6r4LNUuA3d2Gc8+jd60gvE7XF064Qjg6bd65NE1yUFBSz73/SG6qxLs+ferH/P/RDc37+rn4754Whn74aWzpqGr5cl7c5kW2f9lySdP1Yx0E0k5dT4bS/NCKwfYPUwGaV/feN+qmgb3fQLGaPov+EBSGDcIQGuV4kOnk95K/Vcgdh2Mmkw//pnnpB37Q2jprQq781w/yeikwk3uDiO40bF5er8eftjVhW1yEc4/UzPqZgXF4IExriTKmi2Zbry6tyZgb4TUq+yumdvacWZeUkIij6fnB3WIsFxHNdyYvOOvoJG7Gi0OVXOrfCIDr4XRV9OvnhDY+181c6zqa/6+tzv7784J28hMT28xeZ5DBPvPTC4f3GVqPX7BK+/Be//6kodTYPjOM5vvrTsUPSbx4qr7A7YB/Svb+y2G60jvimUXnApeu/m35PqxaOZTA3cZsajfw/OJeSHB55ZMJPo4kKc9mb0h79QmBxt12et40+XOBeXuJefC3no4aAXXo51cSG6rK3k9islZTd85xLn4hL70lOBDzwS/PK0OBeXg6s2VbXa1vNC5x56/gn0wUdCZ63Nz2vS4TjOyTr7xrTwx+73feLZlH2JTPvPhllvKEu54Doz4rU3iC4uxIBzcgeXX3WjEV38c/nb2044vJHNkBw/F+dCJL4etf/vft4IGvBiXJwLMX7F6ZIqm+K4gQcT/hPii6A+jwWHu54vb1ZhuKx2TWzM0wEogvr+IyxyS3mHYhS/TTEtg5LzoK/3k5HEaTFR05JPHGRIdWYLjuMqTfPW6Kh/BfggqN9TkdGry7i4BaPRrrhG7n/MF0VQ/2djYv2ZtjImg5Ypafg+IuSeoAgXItElLvrZ6NS9FS0do7hhjKB2wYEwBEXv9Q6aTCS6EIkuxNgXgv1dSJUNvcc3jFp5vfDGYm+fx8KiXIhEl5iIJ6KzSTyRtHubZj1X0rbvgN+9PgEvxBBdiMQp+4MXX6jJyjt4j7f3o0FRi7NKKQZlQVH2nHjiG3FRk3xRxNvvn/ujphGJLnG5Vx31TipiRp1NeCgwZHIM0YVIfDXM3/UyvU3ZPS7AC048ODnEF0F9/h68/5NccoPSiMsohNhY6ys1MSxiE5klG8ErhbErM3127jzfoIRb+I8LEEo/amtrx7Z/D7ltrWZaLCaTLX3m7JtN5u5Vtgxwc4f+Lc12Lc12D7edTR94o9a15kHW9tv48a3/+jGLM1Q7Rw+1mE0WS5909xHHcXPvVRbr9sxmu8aj2Kxt4/0qdz2ffvUtFovJfmHvQo46OZr+mPvtikGeoH0nHW7U0q+Opefflv4NbBn4LhD9Cw61E0b/Smk6GVE7XWOLO8G944Vx9fePjVp6Vceu+cEff1lSyFJpDON7fMugEh0JWJNUdtvuOwzc4eT4zAu51O++psAYZlz5l0/d5X7U3f2Yu/sx99/La9l3w222AAC4YxlX/gUAALiDAP8CAAA4B/AvAACAcwD/AgAAOAfwLwDcCVhnr5nNZpPJZP2v0Wi0LjSZTNaFwFgD/AsAdwJyudxoNHZ2dnK5XJ1Op1QqGQyGQqHQ6/V8Pp/P599Nf1R33AD+BYA7AYFAwOFwxGKxXC7ncrk8Hk+n0/H5fC6XK5VKpVIpl8s1m8f3lPk7D/AvANwJmM1mmUxmNpstFotKpbL+OQUMw5RKpcVisVgsCoVi9JcZAn8N4F8AAADnAP4FAABwDuBfAAAA5wD+BQAAcA7gXwAAAOcA/gUAAHAO4F8AAADnAP4FAABwDuBfAAAA5wD+BQAAcA7gXwAAAOcA/gUAAHAO4F8AAADnAP4FAABwDuBfAAAA5wD+BQAAcA7gXwAAAOcA/gUAAHAO4F8AAADnAP4FAABwDuBfAAAA5wD+BQAAcA7gXwAAAOcA/gUAAHAO4F8AAADnAP4FAABwDuBfAAAA5wD+BQAAcA7/D0sOVolZbpyrAAAAAElFTkSuQmCC" alt="" width="312" height="224" />
五、模块的分类
a:标准库(内置)
b:开源模块
c:自定义模块
1、标准库
a、time和datetime
在Python中,通常有这几种方式来表示时间:1)时间戳 2)格式化的时间字符串 3)元组(struct_time)共九个元素。由于Python的time模块实现主要调用C库,所以各个平台可能有所不同。
UTC(Coordinated Universal Time,世界协调时)亦即格林威治天文时间,世界标准时间。在中国为UTC+8。DST(Daylight Saving Time)即夏令时。
时间戳(timestamp)的方式:通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。返回时间戳方式的函数主要有time(),clock()等。
元组(struct_time)方式:struct_time元组共有9个元素,返回struct_time的函数主要有gmtime(),localtime(),strptime()。下面列出这种方式元组中的几个元素:
1)time.localtime([secs]):将一个时间戳转换为当前时区的struct_time。secs参数未提供,则以当前时间为准。
- >>> time.localtime()
- time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=14, tm_min=14, tm_sec=50, tm_wday=3, tm_yday=125, tm_isdst=0)
- >>> time.localtime(1304575584.1361799)
- time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=14, tm_min=6, tm_sec=24, tm_wday=3, tm_yday=125, tm_isdst=0)
2)time.gmtime([secs]):和localtime()方法类似,gmtime()方法是将一个时间戳转换为UTC时区(0时区)的struct_time。
- >>>time.gmtime()
- time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=6, tm_min=19, tm_sec=48, tm_wday=3, tm_yday=125, tm_isdst=0)
3)time.time():返回当前时间的时间戳。
- >>> time.time()
- 1304575584.1361799
4)time.mktime(t):将一个struct_time转化为时间戳。
- >>> time.mktime(time.localtime())
- 1304576839.0
5)time.sleep(secs):线程推迟指定的时间运行。单位为秒。
6)time.clock():这个需要注意,在不同的系统上含义不同。 在UNIX系统上,它返回的是“进程时间”,它是用秒表示的浮点数(时间戳)。而在WINDOWS中,第一次调用,返回的是进程运行的实际时间。而第二次 之后的调用是自第一次调用以后到现在的运行时间。(实际上是以WIN32上QueryPerformanceCounter()为基础,它比毫秒表示更为 精确)
- import time
- if __name__ == '__main__':
- time.sleep(1)
- print "clock1:%s" % time.clock()
- time.sleep(1)
- print "clock2:%s" % time.clock()
- time.sleep(1)
- print "clock3:%s" % time.clock()
执行结果:
- clock1:3.35238137808e-006
- clock2:1.00004944763
- clock3:2.00012040636
其中第一个clock()输出的是程序运行时间
第二、三个clock()输出的都是与第一个clock的时间间隔
7)time.asctime([t]):把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 1993'。如果没有参数,将会将time.localtime()作为参数传入。
- >>> time.asctime()
- 'Thu May 5 14:55:43 2011'
8)time.ctime([secs]):把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。
- >>> time.ctime()
- 'Thu May 5 14:58:09 2011'
- >>> time.ctime(time.time())
- 'Thu May 5 14:58:39 2011'
- >>> time.ctime(1304579615)
- 'Thu May 5 15:13:35 2011'
9)time.strftime(format[, t]): 把一个代表时间的元组或者struct_time(如由time.localtime()和time.gmtime()返回)转化为格式化的时间字符串。 如果t未指定,将传入time.localtime()。如果元组中任何一个元素越界,ValueError的错误将会被抛出。
- >>> time.strftime("%Y-%m-%d %X", time.localtime())
- '2011-05-05 16:37:06'
10)time.strptime(string[, format]):把一个格式化时间字符串转化为struct_time。实际上它和strftime()是逆操作。
- >>> time.strptime('2011-05-05 16:37:06', '%Y-%m-%d %X')
- time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=16, tm_min=37, tm_sec=6, tm_wday=3, tm_yday=125, tm_isdst=-1)
在这个函数中,format默认为:"%a %b %d %H:%M:%S %Y"。
最后,我们来对time模块进行一个总结。根据之前描述,在Python中共有三种表达方式:1)timestamp 2)tuple或者struct_time 3)格式化字符串。
时间转换关系
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbwAAAHSCAIAAAAYLOmiAAAgAElEQVR4nOy9d1QU256w7TmzZt6Zb2bNmvXeP95vfeu9E+7Mvefe4wkqOYMKKBkDCCIgSUVQQTChgGI8IBIEOpBRETwGUEwYkAxdjRFRUUHJGZrOXbV/3x/dQBMVpO1u3M/6LWx7d+2q7tr99E61axFgMBgM5rNZpOwDwGAwGHUCSxODwWBmAZYmBoPBzAIsTQwGg5kFWJoYDAYzC7A0MRgMZhZgaWIwGMwswNLEYDCYWYClicFgMLMASxODwWBmAZYmBoPBzAIsTQwGg5kFWJoYDAYzC7A0MRgMZhZgaWIwGMwswNLEYDCYWYClicFgMLMASxODwWBmAZamakIp+wAwGMzUYGmqKEguMBiM6oClicFgMLMAS1P1wHXLbwjcD6N+YGmqIiQFx2KTo2IZUbGMI7H0I7H0I2cYR2IZR2IZUbG0KNlfunKSZKmjSYy5JY3kqf5JZxhHYmlHPjvp2OlkEValOoOlqYq8eP3WaJ3/0fPVhy/Ujg/WpGdwqFns+i0n4nis3NnGLQs1A0tTFXnx5p3V1hNphITORnQ2orMBx4KJY/nsgyfi5c42lqaagaWpijwfk6byv+Q45jeO5bMPnjyj7CKGmTtYmqoHwtJcyDFemrh3U/3A0lQ50LjmufK/5DjmN3BNU93B0lQ5sDQXdmBpqjtYmioHlubCDixNdQdLU+XA0lzYgaWp7mBpqhxYmgs7sDTVHSxNlQNLc2EHlqa6g6WpcmBpLuzA0lR3sDRVDizNhR1YmuoOlqbKgaW5sANLU93B0lQ5sDQXdmBpqjtYmioHlubCDixNdQdLU+XA0lzYgaWp7mBpqhxYmgs7sDTVHSxNlQNLc2EHlqa6g6WpcmBpLuzA0lR3sDRVDizNhR1YmuoOlqbKgaW5sANLU93B0lQ5sDQXdmBpqjtYmiqH6kiTQUx6cuQZ2gyvmTHkN5RuS5tmF58bxMybUFO8qUnv4msGlqa6g6WpcqiONKeUzqdfTIwTk8xNU/rxC2NsF2jkLxrdI61uNkc+W1N/QWBpqjtYmiqHiklz2mAQMN3thUeqnzPcf3js+fF2m8p0UuESiFGHmGyKQXy+DWdl/K8UWJrqDpamyqGC0mQQwCAoBpscp6Evq50x2IjxGbd0Z7CRXP2UZD5sTrjdnMwG+sR6KzW1oMfVRqlJTyohsDTVHSxNlUMVpMmom/hMdm1f4JmrR659mDJ15pC3G42QqS2ntnd77LWowpYpXyaNdEJwJKdkB72STlB0NqSyJYGHE42dQpJYMx2qfG6z7XL9CoGlqe5gaaocqiDNyZFb9VHbzntL/KNZbEVMeiAnstyqJg0br+1JFRO2ktdcJovjGXLU2DuGQVCMOmAQ5Nk7b49feTWvfaMz9CEoJLA01R0sTZVD6dJkEuKsmq6DtALfSLrf4fTdtMrUyp7wpCxN09VWXmFekeneJ27Qa8W04kbXqIvMB2/3xF/cfDSfWcELPHP5QO5LOhsxCCqdzdkVW3jowouUOmASVBar//j5h9uOMn2PpO9LZaVX94bFp2mYrLb1CfeKzPA+WZTCIiccRiohiC+sslrjomO92Tsi1eNwXtzDvmO55YHxRckEpBOig2l3g5kl9NvP/Y+m+h09H3u3M5PFi84v84tkBMRcTSzjSvNJJ/ipJU174vJ9Ixg7YguSSznjPY6liZkdWJoqh9KlmVk74OC9XdNio7VniJV76FKHsJjC5/tjaRqGKyxcdmzcHesens+s4dPyi/5Hx0Lf3sds/ZYVnkfTH3aaOm50jbzMJBCDILPqWs0dvDdH5iU9hsyaHo/dRxabrLHYGLhqU8hS+31nbtTviU5aarDScuOujSGx7pGXkmvJCfXHNIIXf+2RuY2jtsUGt93RzqGM+PuduyNPLV8fmEBAZu2QR8Bu47VbdW29rNx2mlq7LLHy3p1wTcva09o9YJmZo+WWBBqLYrAlqXeeaK3eaLJmi7V7sJGjz1LrbTH3+idUfr/m3CMsTXUHS1PlULo0sytadIwND59/ySCAwSYzWGImQeVVNenaemyNL5G+JpUQ0fOuL9Y02R5TxCCAQaDzNT2mjq4yabKprLoWCwdv78g8ep34dN69n7SWH730lk4Ag5BmiPIq3mlZu29PKh/t5ZRXmNRiWSyOd8ghE69TDIKksyGVEO+OPCmVZhZryDMw6G96djG3Oxls8krFE72VFrqOO5m1KL2On3yleLG2/cm7vWms3pV2zl77kjNqJekE91LNe0tHF+fwa0rs68TSVHewNFUOZUsTZVZ16ltYmrgcjMp7lskSpBIUnQ0XpdKMk/VpprFFtLyi/9Byir7dKVNtbc9oTZNJUFl1bVJpZhL97rsO6tjuTq4l6WygEbLR8LzK99rWntuTyulsYE44hpFpnlksjndIuInXKYZsIEg0Jk1iYFPAXlPPEwwWxWCjPKLRYp23y97MpDpgsMXZle91jSz25zVmlTz9Vd/G1Hm35dYTq7ccs/M7pG2+ztjnNINFKWsMHUtT3cHSVDmULU1IIwRxBaxNQYc1Vzj8bORo4RMT/2g4t6pZ19Zja/xDBhvobEglRLT8ov9P1znuQb9Uhdm1vWPNczaVzW61cPD2iszLYvXab9q+fFMMnUDynsqrfKtl7b49qYzOBgYB4+qbctL0Cgk38R6TZkjEWE3TLXDfCv84BoEYbHSRaDR33u4enp9cBww2mVXRpG+8cl/uq5zi2l90rLwPpAQnXAuOv7o74cruhIJ92U8Yk6q3WJqYzwRLU+VQujQZBJlGiNMJQSZr6HRe8TJ9K7/Yu+eq2/TsPLbGPRgRq4iWX/T/6jnHPeyXPpNd27fSydM57DyTQAw2mct6a2q10TMyP4MY8NkbpWG5PblGLMtfJs132tbuAUll4/Y+vvaXRXC8QyNMvE9OUdNkcdwC963YdoZJIAYb5RKNK50DNoVfSmYDg01mlTfpG6/Yl/s6q/T5Un2boLN36WwqjZCkscRphIQ5Nj1+mtmdWJqY6cHSVDmULU2KWcM9e7uJXi1MI0Q5ZQ1GK+zdj1/Lrulcvt7X7dBFBkEy2GiyNHNYA567D+ra7zhbykmv5aTkF2hor/CMzKfXSRKulv+sbbaHWU2vFTNZoqSSgZQaycWaZpM1PpuPXGYQ1HSz3DNZHP9DJwycwpi1YgYbjZfmkFvg3vHS3D5BmntyX6eyhuxdvbSttsTe7WGwyDQWL+n+x9h7vRP3hS+jxHw2WJoqh3Klyaij6GWtS40sFuuZ/2pk86Oe1R913aLv9mQQQ7tO0n7SMl1itl533aGUKi4t/7a8NJlsUWbpWy2zVT/pWvzVwP4vZvamFq5ekXlJdZDFGgw4Ev+DzsrF+pY/6tv+Ud/36PWODGJgW2TcT9qmS5Y76TlFJI3UQ+lyA0GpbGHi9erFOst/MbRdYr7t5I3m4MPR8s3z5f5nmARFH61pHspPJmTS1DNesSf3NZ1Nna/4YOzg+aOO+c/6lj8aWP2X3rpNJ4vxQBBmzmBpqhzKrmmiVBY/5U7DybzKqJyyY3ns5HIugwAGW5JW3R/9e21UTtXh3Bd0gkwt6zhw4WlyzehBojRCRLvXeOxCxdGLBLOq7+SlZ6dvt9PYwCTILBYn8WbD0fNlUeerfrv+gc6iGGxJelXvb5dqonKqDl98OdanOU5nVDrBS7xZfzSnIvLc46QKbsKdxmOX61PYkEaIT994efT6B+km6QTn+JWXMbe7aGygs6m0Wu6xCzVnynh0AtIIcUZlT+wV9tGc0qPnK0/feEevlh6zcro1sTTVHSxNlUPZ0hyz5/SzFyl56Uy1TNwMPkLT/HfSJhMWcJu5bjjVRUeTY/z0JixNzFzA0lQ5VECaspXWppcmkvs7parQJ65PHz94nUqIE24+P5FbdTy36nhu1bGLVcdzq49cfBz/iEufP2mOfzto0jNfKbA01R0sTZVD2dJEn7Wi2lROlBPl+Bw+1YGYTgjc9x771WzNL2ZrR+OHFZuDM59OvwvZ48nimzh7iQ30uskvU9qqcVia6g6WpsqhbGkqJxhsalIobSqlQgNLU93B0lQ5vk1pfjuBpanuYGmqHFiaCzuwNNUdLE2VA0tzYQeWprqDpalyYGku7MDSVHewNFUOLM2FHVia6g6WpsqBpbmwA0tT3cHSVDmwNBd2YGmqO1iaKgeW5sIOLE11B0tT5cDSXNiBpanuYGmqHFiaCzuwNNUdLE2VA0tzYQeWprqDpalyYGku7MDSVHewNFUOLM2FHVia6g6WpsqBpbmwA0tT3cHSVDmwNBd2YGmqO1iaKgeW5sIOLE11B0tT5cDSXNiBpanuYGmqHJOlqZRb2eBQUGBpqjtYmioHlubCjgnSREosapg5gaWpcuDm+cIOXNNUd7A0VQwkk+bqbcfTCDGdjehsxMCxgOJ4HvvgCXlpUkorbJg5gaWpirx4/dbWLzyrqi+9mvOlUTPhv8PzkOfsDmDiHtOqhhSzo3nOMGP8kadVz89hn7pQduh4rOxMI9w+Vz+wNFURvlDoExDivzdq296j8xVb9xz133ts296jbv57//0nvXnK9tgskvZEbdt71HtXuIaZ/eYdB+dw/KOPVzq6669at23y57NndnlOF44eAXqW67yDwj/nYGb9gew+2N7ZBdiWaguWpmqB5P5OfDgf5OXl7dmzp7e3d36z/SRNTU0nTpwwNTX9p3/6p+joaIS+6H1RFFVUVLRly5a3b9/O1xHKIxKJVq1a9fd///dLly718/O7dOkSh8OZ311gY6ovWJqqBZrw7/whEAiOHz+ekpIy7zlPB0KooaGBwWCYmpp+//33ixYtWrRokb6+/nzlz+FwgoKCcnJyvlDBU0KS5A8//LBohO+//37FihVnzpypqqqal90hrE21BUtTNZnnwYHW1lYbG5sPHz7Mb7YzgBD65ZdfFo3nX//1Xzs6OuZ3R/fv37ezs2tvb5/fbAHg5cuX//Iv/zLhLejq6lLUvJwdPP6jrmBpLnyKiopcXV2FQuFX3u/evXtHXfPdd98tWrQoKSlJETvi8XibNm3KycmZ95wzMzPlj//f/u3fhoeH530v0zFWpUVihCjxJ149u7wBSRAiR/KkkHwrh5IgRIomH8and40AKECwsH8SsDQXMgihwMDAc+fOSSSSr793kiTNzc1Hvenk5KTQwyguLvby8prfKidFUaGhoaNvwdDQUCAQzGP+MyFvKmHXRqd1Z6+UfI4Y0cT/ovHWk+pMXHXzouMqy04AhMiWdw3FZTUjnpOUXb+4xsqqZzYelu7jG+lxwNJcsLx//97Dw4MgCKXsHSF0+vTpiIiIP/7xj4sWLfqXf/mXjx8/KnqnXV1doaGhDAZDLP5Etezz4XA4S5cuXbRoka2t7Zs3bwICAq5duzZPLfTPgQIAEHS4Oq1NuPJIrsubmspRY8+jic+j0WQAABBX37y4ZpVlOwCi+NeyEla7bx+pWlKt719dvfw7R9bxKjUukssWAZByOU/YCxp79QIFS3MBghC6ffv2pk2bFDFC8jl0d3f7+vo+fPgQAB4+fPgP//AP9+7d+2p7v3XrVkBAQFNT03xlODQ09B//8R9v3rwBAIqizp49e+jQoa6urvnKf3pGFCfs3Lh+VJoIkLiz9V1NTWUVi9XS1SMZc5m4u72JYFVX1VQ/f/OOLyEBACFxd/u7urqaquqqx8/rh0UkBQAgrr6Z62hp2QXAHWiOO7p3+Rq3suqasmpWd/9gf3dLHbuWA4CQpKPlDbv+pUDAqWNXV9ayOvoHEFADva2smiqi7skAXzByiAhAPNDbzmZVV1XXvG76IEYgb9uFBJbmQoMkyd27dycnJyvrAJ49ezZhiLy4uPgr6xsh5OLikpubq6AqIZ/PX716dWVl5eT3NW/vVD4bQceYNJHwUWGGhqaWnpGJqf7Spdp6RWWEEACAf/9amqaWtq6BiaGhgYbe6gcVjylAXS1vzTX+pm9oZGyob6y9bPka7yExCUCOSrP1FWvDKsNfjC3dfbd6egeynz8vu5G7xsqqCwBRwnzaMQfXDQ5rNxgZGBrqLltpY/P4zTtDLQ0jQ30DrWUeO44IZXVL3pPKYn1NDW1jMyMjPV1NjRO0fNGU70v9wdJcOCCEBgYGzMzMXrx4MfrMVz6GqKio06dPf/1Bp8mQJFlaWrp8+fJ5n2IpRSQSXb161dbWdn57Oac+YSPSBJAIBxpXGxnEZ+YLKIqUDCZHh1tYOfZJKFH/uxX6ummXi/gSCQDiDPP4AhECICXCgd5OkqIAyKHeDw4WljfKnggBqm/mrlll2QGAKN61rPhVHgFCWbWQrLh+bq2VVQcAooSXUo79omV2t/KxmEK8/sb1tmbLHVzfdfdQSNz4vExfd/mz1n4JAAw3W1uuvHSrVERSAKI3zypNDFa8aBtYkN7E0lw4XLt2LSQkZHBwUCl753A4mzdvvnv37uQkZfUSAEBfX9+BAwfodPo8HoN8Vk1NTTt27Lh27dp8ZT66kylrmoD4lTey9E3XdPJJEgCA5LU919HVKXn2uig7ztjctUdIkjBhOFvY1/aGnpJw5MiRqCOH1q9eEXIqlQsgrWm2A1AUvyDrjLnHzhH3i+SlmU87bu68jSftKSBbInZv27zz8BAAAjEIO9avMPm97LEQgH37vJnOsjh6ZiqTyWTS0ugJlsamtILSrzVq9lXB0lwISCeux8fHK+sAysvL3d3de3p6lHUA8kz245UrV4KCgqSdkoogOTk5PDx8Xns5p5YmonhX6CeWOwbwZGM0CLhtpitML94tSQjbbud+UDBxGIjf9Iqlv2zJrpDQhMSzqQyah72l34HYYZk0LUalaTGNNC/Sjtv4hcoaDlTL4f0hOw7G8wEASBB1u1san79Xwwe4Rj9qqadz4MjJqCOjRN2ufqqESRuKB0tT7ens7LSzs3v27JlS9i4WixkMxp49e5Sy98+Hy+V6eHhcv359HgfW5eno6LC2tmaxWCRJfvrVs0WupllyhWm4ckO3CJEAAJS4+5Went5d1vMrtBNmVpv7xWhcJy7Vw4g+ZL9h1xACCkgg+4NdrbYeOD0MUH3zolxN87Sl+86RLhVRReG5dXLStPYLFUoFTbVE7g/ZcTBBADAiTaPz91h8gPIr9OXGyz9yyYU26DMVC06aX3jSPrH5VKMKky4XnyInNOWz80B5efmqVat4PN485/vZmJmZVVZWKmvvswIhVF9fb2Zm1tfXp4j8pVfEu7m5iURf2JU3qZiN9WmKed31pjq62UUPRQAAgrzUWBMz824Rye96aaylc620Vlq5k80uovqSThxYvT6ARwGAuKWxxmjJ33zCEoYBqorGpHn7YoKF01ZZLRUkFdfHSVOupvkxcl9IYFiCAAABCaLeTatk0qT635gZ6pxIyhmdLS+RkCJqwQ2cA4B6S3O6EzLN89OfPwqAnNCsQbIGEgVAUV809UxRxYaiqL179547d05ZPYYsFmvjxo2tra1K2fvcQAh1d3eHhYWdPXtWQbtoamry9/efj15OOXUKuzY6rT17+SECBIh/JT1GT9/Ie8u2bd4bdfWNsq7e4QMA4uWmHNc3NHH38tvmv83Bybe05hkA/92zUv1ff3LZvHXbti1rHR22bVq/5UAMD6DqZr7jKssuAIREnW+rDXSNNm8JCAwNf/qyoexG7tqR0fOL9JO2fruF0uOhWiP2h+4KixPKpNnnZml84V6NAAAobklRnr6OlpPHFv/t27w8PcxX2H3s5yqg1q181Fma45lkDmmZoxBCM846QQDC5+xyJoORTM/gCgTkWFakWDCYmXK2ubdf1c59c3NzQEBAVVWVUvZOUVRiYuKxY8eUOMLzhRQWFgYEBChovr1EIklPTw8KCvriQbnReZpDV3Iv1D1/iygKkARE3Bes8nRGSnpG5ov6RomERBIJUBKgBC/ZldlMOpPOLLpXOswTgFgIYu6rpzXpaanZGTnv3jaX3Sm8db9MQlEfGx7nZWcKECBEgpjbQFSk0+k0Rtb7981NL+vyc7IECBAleVH98NK1mxRFAUIgGXh459bd4koSIUAkCAYvZ6Y2vP1IAgApBhGv/X1D7vlsJoNx8Xzey/p3FEktxGmaC1maAAAg7ouJji573jR9+5g/2N6wXEfHOyAoLPx4R9PLwLBjbYNcAAAg+QNt9kbaNW8/zGN/9hcWIYqiiouLXV1d5b+QX1Ne3d3dAQEBRUVFX22PCoLH47m6uubl5SloglRvb++6deuKi4tnP1dUbsI4ACDUWce+5uNzbc8+amAABIKK6Oirvt5v7xWDUNRJ1F318SncF4qGhoDPrzh54qqvz7v7D0Ak7mCxr3n73Ni/FziDwOeXnTz1u5/f+wf3QSjpqCEKfTbfDNsHw8Mg4JceP3bV1/t9yUMQStqra6/5eN06FAbDPODzS6OOXPL1ayp9BEJhW2XFNR/vmxGRMMwBPv/R4cNXfL2by8pBJGwtryjw8b4TGS5Nehh55JKf34fyclDG9buKZgFIkxrfqh4roAgABG0O9vbnilloOrOggYqbWSut3IckQAHZ0Vjzg65FQ0ffyMUMEkAS8eQOyhkdNU0n5zwgFoujoqKYTKYC8v40CKHm5mYDA4P+/n6lHIAiePDggYODw9DQkILyT0tL8/Hx4fP5s95ydNkLHq/2+nXg82GYc9raJsbUBLhc4PH5Hz/Em5jUFxRIk36zXBVjagLcYeBzh9+/izcxflVUBHwBcDgnVi6PHdlq8M3rMybGb+7cAT5fmnTaTJbU/7I+zsT47f17sq1WrIwxNQEuD3i8nmdP40yMmx49kiadXLF8NKmrjh1nYvyxokKa4cnlK2LMZEktBAt9afeuKrIApDmKCAk6T0buX7vGwWmD27Gz58SigcPBXjraOkarHOwc1rt47RJIxE8r7zh5+w31te0P8nd1dTl75pT1SoNl2qbWjo6efh5rV5v+pKFvabvG2sH1ZDyDO9zjtc72cVMLCWT7W7blOqf21qao/UFr1jozz1/hI2hrfBzg6+Xssqnk8buR0iEixX1pSaed1q/Z5Ol3q+yxaJ4E2t/fv27dutevX89HZnMhNjY2JiZGQaPPX5/RH9GBgYHQ0FAmk6mgCnt7e7u7u3tZWdkct5eIgSIRAFAkCPjA58nWJBJLgMcFkRhkScKxJIl4fJL8ViLgcUE8ksQXyJIQArEYeFwQiwDQSIZ8hCi5JIlchnxACBACkRi4PFkSKdtKliQWw8x9Y+rJgpEmEnI7nC2W7QiNuH7jZkFBYcTJZO5wXz3rroW5xeGE1JLSigrWUwklJu5e0NQzMLa0TU3PyM/Pf1NPJJ06ZLhy3d1HZdVE1Y38tL9pm+QW3iwpq3rZ+J438NFa++fSN81iJGl9/mCJpqalo0taRkZOerK+5q9JWbmePlsv5ecl/Rb5k+bK502dJFCcvo9eTjZbd4ZcLbh2LjvN3MzsbHbhuObfnL6Yv//++759+7q7u+fn0/pspB7p7+8PCAgoLi7+ynv/apAkefv2bU9Pz3m8Yl0ekUh0/vx5f3//OayZP26i+mwWHpr6xZ/+YZjQrEJy20zfyJr16Ksao77SnLgCVnfLC7Mlf2R/aBNLU5GseW7vYJdVzJK9GomJOxeWapmWPm+SVQyp/odXGKa2/hwSKCTpeFP5Z32Lhg7plBQxf6DJSvvnMpk0Hy7VMCgseyICALI3KXL7T1qmRHObBCiJoMXK0CT10h0RCG5coK2xX98vllAAgATshwV/NbDv4so1UmZZjoaHh48fPx4XF6eQCYCfQXl5uZ+f39dcwFhZcDickJCQzMxMBVU5m5ubAwMDr1+/PsftP+ugJvbej7wXCpBc36qEe+tWUX1z2+ftmJpemmjCv9MdzUJCXaWJJs5lQ0Juh7Ol1mpH18uFtxqbPgyLJBRMIc3au7lLzZ37haPzyaTS3D4mTb3RPk2ZNEvfNIuRuOX5w//RMX/TNQAAgHrLCpj6K116xCABCqjBICebo4mZQmooPHDzUgMru3Xr165du26t43rrlf+ju7qpu39uo4itra1ubm4NDQ1z/Zy+CJFIlJmZGRISoixfK4Xbt29v2LBBcVOpUlNTg4ODZ+oXnqGgTJ4OPL3f5ZIoIHmM2JOPG5tl4zLC7g3O67Nulk+eTTwxw9Gu1Sn2JTeEMMPPzIITp7pKc4oJwEhEifsL87IcrCyWaWgbrXbpEwhB2DFZmstWb+gXjwzqUf0Pr6SOq2nqTahpLpZJ88WD/9Zd+b53CAAA9ZYVZRpYeQ1IgAIKqMGQDTZR8WlCcijYY/2O/ad4IpFIJBKKRCKRaEgsFs+p5lJRUeHp6amU9YMBQCKRrFu3TlkXGikXgUCwZs2avLw8BeXP4XCWLVs2yxljJCDJ2NWVsgcUIHLEWBSSrXOJAEkAKGrsSyIBcc9Gc8PLpSyR9DUkXyjmc6U1SEQCkLLcpDOTZTlLYGLdEk2e0fwNor7SBBg5oyPnlQKEECBAop6Wx5aGZplF5aSwZ429ffZdYrw0nQdHpYn65GuanY0VcqPnYv5A81hNc5I0DVdvHpHmUMgGm6iEdD7iJh3da+ng0S+RNoXQSHGcHSKRyN/fPy8v74uvLZkjNTU1W7ZsUa+J6/POw4cP3d3d5/2mRlJIkszPz/fz85thkSS5kkOChFt46Zyf75bwI1HNH94Hbtv1vqOPAvLu1QvRJ483d3Tt2RW4bXtgzdNXCKjHNY8Ct/mGHAhvau+RAAAIj+/3XqH182rnzZ6+W3fsjRALuOEHw25VsAEoJB46uMuf9bw+K4O51dcrNjmVK6a4nJ7fjob7+vpdvnFfNpKJSEDC0vu3gnYE+G3dll9wU7BAL/j5JOotTTmowd7OuzcKB4d5CCTt79nL9U2vljwhJX2+mzZGJZyTSKcmIVFt8ZTS3CaVZl8LsUR7eeWzRhIAAZd3DuUAACAASURBVDlOms8nS3NiTXMYqFd1JYaaS2LSLw7yhQiRTe9eJaedE83GnK9fv962bZuyVlwXi8XR0dG//fbbXGbJLCCkTdHOzs4DBw4kJycrqL7f2Ni4c+fOK1eujGv5Ti4sVH9a7GFTY9Ok1MyUpDMeLmv1NJY/bu6TgORi4nH7FcvtXLyYqWmR+4ONTczTM+luPtvS01N93V0cXXx6SAAQV9zLtTXUCotJunyj6PbDMorfs26NI/NGBUIkCHpcTLWd3bwORB3PYiZamFseDI/w898Se5aRFPebsb5Bzs0yMSCgBmOPhtk5rD3LTM9ITbFbbb73BIP/Td5UU22lOfFckT0fX/lZG5lpLdPW1NI3Mt0WfHhYIEIU53ou09xQz1DXxMHRRyAW1xbna1uuGxaKR9o0/aW/MyysfbgkICBJYdehLe5GWpra+qsiTpzlDbTaaf5U/qZZgiQtz0p+1DL90CPr06y8nrHc0n1QgiiggBzc52R9PI45BAAkr+zWJVdbS22tpRqaWsuXr/LfGS6UfHr4UcqtW7f8/f2VdS15R0fH7t2779y5o5S9qyxFRUU7dux4//69IjKnKCopKWnGRZIQp+WpsZ7GzaqXCACQ4P7vNK2lhnXNfWKQ5CUeM9Ezre/iAyAgOVucLCycvHgIAGC4/aWegX55Yw+ABCS9buaGl0oJ2ZrBgo71axwZRZUAFAi7N5jqBh9JFgEASG7lJmloLMu5UUoCABKeCtvuHnJMBNRwc42RyfJXrb3Shd8H2t+Y6Zuym7sWyAS02aC20pwAokDEHW6s5za8AokEUYga4nPrX0n6ewCJQcQffvue++odkBIgBRSHy335iuwfAIRAyB1ufMl91YRICiiSGujl1j8l+/sQQiCSDDe+4TbUS0gKkSTV18V92UgODstt9Z4iKUSRZH8P9/kTcohLIgRC/nBjA/dVPZBioCiyf4j7spHicOWOdeqZayKRaP/+/enp6V/nA5tMfX29g4PDN17BnA6EkLOzc35+voLGxHg8nrW1dXl5+VQDO5LqG9lWK1d2ylKEQx1PjDSMRqXpscmnS/ZbzDsa7Ox/MFrWp8NrXW1lcbHsGYAExL1uK/XzS9lCAEAAgnZ5aTqb6l0qeywEQIj88OyOgYHux2HpCJDgXNIRW789IqCuJh401PhlrfMmZ2dnZ+f1rk5rtDV0zz9gLcDJ659CraUpv6KBsIXFGmh4OfjmzZOcHGhrZ3p4DL55c3XfXmhrbSkpkSY9z82FtvY0782DjW8uh+6G1rbme/ekSfX5+dDWnuXrN9jYeCk4CNra3t25M9DQMPjmzasrv0Nbe9bWbYONb/N2BkJbS2NR0UBDw+Cb128KCqCtPWd7wGBjY+52f2hre11YKN3qXdENaGu/sGPnYGPj2V1BIBLOUMns6OgwMTH58OGDUq7mRggdP348ISFBFVZcV1koiiovLzc1NZ38Kc3LWROLxVeuXLG1tR3XFYAAQPIgn+ZoZSuriCIxv7/BTNv0cXOfGIR5Z495e20ZqaPyj4a6BB2Jl9X+uK3WNqsuPHoCIAFxn5v5iDRhgjQ7nU11r7PqpUkt9cVGJvpt0p9OSpCbfNTGL1QEVOqhLU5rNja2tbfJMcAX4ua5eiF3viSS11XVIBSChOxi170qLAQeHygSePxXBQXN5eUgEoFE0kkQDYWFwOMBRQKP96qg8ENFhTSpg8VqGNuK96qg8GNVlTSpvba6obAQ+HygEPB4rwqvtdRUS5PaqqsbCq+PJRUUttbWSpNaK6tGtiKlz0xx2AAAkJ+fHxISoqxrE7u7uzdt2vTw4cPRb776LsPxFejp6QkLC6PRaIpbCn779u0FhYVy6WRD1XVTQ/1mqciQsLWhRFfWPBflJY6XZohL0JGEUWnayKRJgrh/k7l+/iPp3YQQCFrlpNk1Tpovio1MDFqlo1OUcFSa1VeSdQ0tmvpFclWVBXi1z+eg1tKcjplK8+S0r26IsR1KJJKoqCgajfa1D2GER48eBQQEKGiAeMEw5VLwwcHBClwKPiXl0KFDnZ0yGZLDH5xtVxw6ES8gKSGv79T+AM2lY81zb295aW7YNU6aqy88egJAAcnZtsYkMeeybMqRoGv9mjWjzXOnCdI0lpNmyjEbv1ARIOA2WVmY7Y+K6R4cBkAD/T23bxUPCiXfoDgXnDTl5uLOQ05zfsVnmPjDhw/29vbKmrhOkmRqamp4eDjMS9USkYDIBbigzfQMDw/7+PhcvXpVQQPrbW1t69Y5VVZWkiQJiPui6q6N+fKfNXWMDLWjwkMN9VY9bx2QgCQ38ZS3l59sUWUkOBzivvvwGZk0eR02NqvzSwiEECBBTkKkrr6RroGJnesWEbd/3Zo16TdKAUgk7F1rZnCr9pl0alFz/UNjY8OOkVrthZST9r67xIAA8V4SJWvsbZfpGGpqLtPX01+z1r2bJ8TSxHwliouLV69eray98/l8TU3NFy+eAZKQEw0//iKRMZ/KrkEeeYYESkKO/kBJeMFbPA/Fps70FRo3c4CSnyM91aUm6tFF8OLFCx0dnYGBAQXlf/36dRcXF7FYCCAGJEQUQkjy8R2hrW/TMSyduSGUUOTI4B2JEHdsUS6KTyLxSBIFFB9RQoRIIUIIiUlKIgQAkACIESUSAMjcj3gSJB6bm0nx+QiNDH5JAAkRElMIiREa7aRXm7M1T2BpKoHAwMDz588r69rEyspKNze3zs5OQMJb+anuu8I/OQA6hdQoXuR2T+alW7K5USQnau+OE6mXp39LM+iUmviVQ2oz/Q8h1Nvbu3fv3qSkpPnOWvbnY0uLn/fmuDNxzR/aAGCot3WXj4u9Z4hw4msnPZx46Q4a/wqEYOyiITTtVtQ0mU++lPlbAUvzq/Lx40dPT08Wi/VV9yr3ZYmOjpYu70YBAMW9khFn5REokrt4DoH0WiYSEFCAAJEUIATk+GvsSCAHdrnYns68wpVVQUlAEpH06j5EASJHvvJopBpCAqIAEDVuAVRq5HmQy3zcZV6K+Sg+L/vZHIB0Kfi2ts9cAmNmRmUkExYlEZyNi1665FddXX1tXf3tuw/Wt3TO/Sd3yvf1RZ+2mvzEzRNYml8JhFBRUZGHh4eSroxEXZ0fHdY4amhoaWlpmVmtz7p0803dzeXav/6sZWRktlLP1PFBzTMQ9W1ctyo591LUvp262roRMWltr4jFurpXr112cVitpaXtHRD6tmuQAjEzOtho6V+X6Zkampmb27sNDfND/Fz3xmWRgEAytG2NZdq5nIjIMD0tjRXWTiW1L9o+vgr02aixbNkGT/+mnkFZS5ASNNbXBPp56GhpGZqsPBafPiCe9Srnc/ow5vVlIwwNDbm5ueXm5ipg5hYCQO3tbU5OTrdv35ZQFDW7o5v2Q52uO/vzM/+2fAkAWJpfB6FQGB4eHhcXp5S9I4SePnm89Mc/aS53fN81BIBaWjsvXS4CNHQlI97aM0A6okoCAL/T18HsJ70V9NyrXL6ws6u/42WZtsZSfasNb1q6eIMd3s72K2xce0QkkAM7XW1jM69wpRtKOHt9XYPjc0lAIOkPcDBforsy58otUsSJPX7A2MDA2Mqxou7Z8FCXn4v9KtftXAoARK1vHxtr/no267JIQna1vnO1t/QJPcFT5Lfwy4buPot79+65uLgo7hbwDAYjMDCQw+FI/zuhyS2HdGHhcc9Ml+dU7x1N9fpvrfdyarA0FQtCSCQSGRkZjY6Sf/1ZkCdOnDh5/MjZyEC3LaFD8h1RFP9qxulVnrvGVozgd3o6rl63LZwnPUokaX9Z+quG2T2iQQwAIOL0vFuhu+wu+wVJ8ndvsIrOujYs3VDcJ5WmRCpNR/NNgYc5CBCQnU2EwdL/zn/4XAwASPyi9OpfDK06hwVA9aadObLZewdfti/RS+LhD8aO7RzFXZJEAQgBiQVT+mB0miogAAmQAjFCs2oUjOYwPDy8c+fOtLS0Lz7gqenu7t6wYUN5uXrcOXnhgaWpWK5fv/6JxRMViUgk8vT0vHfvPgDZ/qbaWF9r7Vrn3aFhhXfL+ACI4l9Ll0lT9nUXdG5ca3PmUomsvwxJ2l+W/qBj8WrkpkkSYe+aFb9kFZV/UpqJF+9Kk4a6G4w0/4vVMkgBAJI0Erf/R9+yZZAL4o4Q7w0/a5sbmpmamJiZmhibGej+oG/V3KOokWgAMcnpsNTRGLtTnuxtk9yBzntF1wfEEllXLBKeDPbbffAoZ657IkmyuLh4w4YNCrrhpUgkys/P9/Ly7pt90fqCH21c0wTA0lQcAoHg2LFjCQkJyjqA8vJyDw+P9vZ2AABAgASCoe47NwpOHTtsvnJVYOgxASm5lhG7ymOcNF3X2STdqBqpdMmk2dDeO06aNysk00hT2jzf7miefPm+nDT/VNc2Js0/G6ySSjPUx8V/73G+3MwV2dRrRSEiOa1W2kvK37aIQd4AknfPKsw0fn7dPzSyd3H1/Zv3Ssu/sNLL4XD27NmTnp6uuKXgd+7aVVBQoIjMpwJLEwBLU0F8/Phx48aNdXV1Stm7SCRKTU0NDQ2Ve042oo0AAep/WlKorbOijcMrzIpftWnnWPN8Kmku0TS+WfFMBAAg7G9/Zaajcf9pA0kK9my0Opl6ZUpp+juaJ1++L62mSaVJtI5J878NLFsGh4Hqy4o/tmLV2g6hRLZ0Logl1FztQnIfP3s6wBlqaXpdV/e4semjEIFENPym4Xld3eOWrj4JAICIHG61lkkTASX4+P4d+9mLoeHe25foxsuWXCutZNU9ftfaiQC1vKt/2/RBDMDj9D17XMsTi968qq97/PRDZy8AxR/ur3/29MnT533DfMno7CAkEvIGGuqf1dU9fv2uWTjSE3Ljxo3NmzcrqMoJAHQ6fc+ePX19fQrKf2a+QYliac4/BEGsXr1aWYtfkCRpaWlZUVEx+ox0Yebj+3ffuX2HLxTxOR17d2wzWbFmSEwSD37XNbFq7eUIJKQEIRB2ua6zSS6qHpVmR/0jLc2ly0xsXzR+HOz+sMbS1NJxc78EKCSmRfpbrfPoE0hEJAli7l5f191x8tIslq9pslsHKQBEiRuJ2/9tYN4yOAwg7m55aazxs4Pb9raeAbFQ8LD4lpXjRsFcLsxDwGlavtI0+NBhQ42fdLQ1f12ql3vj3rHw/QZav+ppLl2sbf7kXScFEqk0K962SJC47VW1vrZ27o1HXZ3vfdcaaS/7dc1Gn40ePsz8OxQSn9nlEXzw+CDA69q7Fpo/bvDz19H6VUtLS8PQqqu3a4OjlYHmEk0tXb2VDl0CEQIAkPS1vTLW+kVHS0NHR2eJloFXwD7uyG+ASCSytra+evWqgqqcHA7nb3/7G0EQeN2ArwCW5nxCUVRoaOjFixeVNXH92bNnrq6uI03yURAg4fNbeSHrbIyXLdHRM9x38ERP9xCIBKSwlxZ92GTpEuNfTB6VEiDq37TG5tyV+yAWA0KAJB3PS/SWalY8KPZwstPV0NoffLC/jyu9VmTw4+OQdTaGS5foma/jDAkiNzsf/42JAIFkcKeDRd6FQmm/Iafz9epf/7P5/QAAACV5V3NHR8OwZ2AIAIAU9DXXx+/ZYairramlvdnNq/R2JTXSn/oZl8OOvgAB572VqZF38OFuLh8oTuLh7dpGJsdoF3hisUTQss3D8+DxZB4gcrjVWvvXmrcfKkqKjI2Nrj96LEAIQPT+aenyZT819HNI2W8MP1ZOmqY//y3x/F2uSCzkdQRstNNfYX2rii0iyd6WemPtXwpr3pNAIlGP73qb07TzA0IRgKSz6Zmpns6txy3yy1uUlZW5uLh0dnZ+2UmeGpIkL1++7OPjM8NS8Jh5AUtz3pCuT1NdXa2UvVMUFRcXd+rUqQn3JZc1ySVi3semu+GHup4+AZEYeIKio0dvH44AAR+EguHmprvhkT0v6kEkBB636OiJ24cjQSAEAb+n6lbI4iWtdc9AJAQer+jo0duHD4NACELh4JuG4vCD/a9fUWIx8HhFRw7fPhIFQj4I+f0NL+9GRA6+fQsiEfA4RVGHbx+OAqEQBMK++ud3IyKGmppAJAbucNGRw7cPh4OQD0Jhz4sXd8MjOa1ts+k6o2TvkvPeZMWq/AcECQAw3FD5u5auxbt+oQQQwBDt2IGtASG9gMjhVjvtxVFnzpha2Bc8rBXJrjwSvX9aumLZTy/7OaQ0T8SPDfIIPnhSKs3lGkvq+wYlAIBEhelHNE1t+6WXXIv6NtmvPHXhDomEH1/e19Y0TGTmpGVmZmZmnktPtrNatTfh4uiPp7QO2NHRcejQobNnz1KKmZD65s2boKCgy5cv4yqn4sDSnAcoirp165afn5+yRsk7OjqCgoKmvTcsRfW+fXs9Ohp4vGpmakN2Tg2DDoODwOVWxcXX5+TcjY4BPq+STm/Iyq6h0aRJ1fEJL7OzCv03Gvyq93tUzMvs7KqUZBgcAC63JiGx/lzO/bh44PPLEs82ZOdUpSTD0CBwubUJifXnch4mJgKf/yguoSE7pzI5CYY4MMxjnU2qP5fzKCkZ+PyHp2MbsnMqzp6VbsVKSq4/l1NGowOfD7KJ27P6ziPgvDcyX1X87D0CABh+97hIz3R9t0A6rMTLig7327qjB4AcbnXQ+lHLyMh3z0nu2Owr8RTSlKtprtBe9prDIwEAxHcvnjK2dZO+DkT9fhtsIjMKSSR8WpKvqWUSGhYZdvDgwYMHD4Ud2H8wPOvKnfEtDtmc9OvXr+/YsePdu3ezeY+fC0mSKSkphw4dmn4peMwXgaX5pfD5/N9++43BYChl7wiht2/fWltb9/b2zvAqkEhAIgFEgVgMfAGIhECSQFEgEIJAAOJJSSQFAgEIeF1v6lavcens6gOBAIQCIEmgSGl1EsQSoCgQi0DA+7wMJyeJpthqTh8DcN4bmq+690yqoeF3T4p0TNf3jEnz0Kg0bbV//v3uPVNT08MJGbIpoiB6/7RsgjRjgjyCJksTTZKmi3VEeiGJhI11Rdo6Zu/G7g0NSH4mABr9M3binJ2dL126NKFlMF/weDxbW9vS0tLJVVpcCf1CsDS/iIGBARsbm+bmZmUdQGJi4qlTp75wdbLxKzIguUcIQEzO1Lkodzmf0r6JFELUlNLsFcqkmR0zVtO01l5S8/Zj0+snelpLTtFz+QAAkg/1VSuW/rW+d0C+eT6FNEdqmkMj0tziahOZcZ0EUsJtdTDTdd9xcIgCCgCQGCGxdJvpJDW6FPzk0zcvXpNIJL///rudnd2XZ4WRB0tz7ly6dGnfvn2Ku2BuOqTfqP7+fj8/v5KSkq+897HDUMCWc8oTASAYem9ovqp4nDTX9QjQaPPcd+uObgByuNVKe0nF2xYSid++qDLS141Lz+UB8Po/rNL60yavbaH7D166XUYhSWzQWPN8udb0zXMX64jM6yQAIFHj41I9rWXOLi67du3y999uYbOm5uXHT76jr7AU/JYtW4qKiuYrcwyW5lzgcrkREREpKSkKWoD2k0hXXG9qalLsbmb8Fs/+Kz5lnRTJPzVXbSDgdJyLi2ttagUAIHmct3XZp5MFQhIAgWj4+Y3LRbn5XADEH7gQc6qvuQ0oEih+Y20p42Rs+/tWQIKud0/PnYlJPX7y3iMWhaiKq+dKLheASNjd2ph2Np43xIUhDpDi108fZTHPUQM84POB5F87n15ZyoIhDpASoASizqabjLPMmOi09Mzq6jqKJwKB8HP6HK5evRoUFPT69es5fgCfgkajhYWFKWjg/lsDS3PWNDU1eXl5vXz5Uil7FwqF6enpYWFh8+LrOS9gMdcq4eRn0DRJn58pApGouaryvK/P/dMxMDgEgwNXwvaf9/XpfvIYBoc+lJWe9/V9eCYWBofQQP/v+/ee9/XpfvoEBoeaSx+d9/UtiY+DwUHU3/f7ntALvj49z57C0EDTo5Lzvr6PEhNhaIDq684L3X3O16f3+TMYHHpf8vC8r29Z0lkYHCR7ei7uDjrv59NX/wIGh94/fHDe16c8JQUGhyRdXVm7d7+tqYbPGyjncDjbtm27dOmSguartbS0uLm5lZSUKGjg/tsBS3N2lJeXu7q6Kqsrnc/nb9iw4cWLF0rZu8oh8y3itLb2S6c3cTiJOjq/GerBMAdEosYrV+J1dYcbG0EkgiFOoo5OjIkhcDkgEr3Kz4/X1eU1NY0mxa4wlSa9PH8+XldX2NICIhEMDSXq6MRbrpQmvcjOjtfVlXR0jCadtV4lTXqanh6vq0v19IBYBINDiTq6yXa2MMyduNLQp2Cz2fr6+oq7vOfy5cvu7u74Rs1fApbm5yIWi728vPLy8hQ03PlJWCyWh4cHnkcyCQoQki12jBBQFCBKpipEATX6WElJozXpz5MnQqi/vz84OFhxt9trb2/fuHEj7uWcM1ian0VjY6OXl5f8teRfs7IpkUiOHj165swZXEFQM76gjNy4ccPf33/SxV3zg0QiycnJCQwMxJcPzQEszU9z/fr1nTt38ng8pey9vb09ODj4zp07Stk7Ron09/f7+vqeO3dOQesYSJeVuXnzJu7lnBVYmjMhFAojIiKUeF/yx48fr1+/Xlm+ViPQpAdyjEwmnWp5808kTd2snjlppDE+T02Ru3fvenp6KqjKCQApKSkhISHKuphNHcHSBJBftVuu0d3T0/PTTz+1tLQo6aDg1KlT0dHRyprVpN7MbVrAvCd9mTlHS6NAINi6dWtmZuYnXzk3BgYGHB0dKyvxUvCfBZamjNGbrki5fPnyzp07FXc/65np6+uzt7cvLS2d0uYYdWEezxlJkg8ePLC1tZ2nG15ORCgUXr582cXFZXBwUBH5LySwNAEARCLR0qVLb926BQAURUVERCjrWnIAKCkpCQwMxPOQMZPhcDj79u1LTU0d/RGNi4uTltt5obm5OSgo6Nq1a/OV4YIESxMQQp6enosWLfrP//zP58+fOzk5PXnyRClHQlEUk8kMDw8HFapaqshhYMYoKCjYunVrU1NTe3v7H/7whz/+8Y/z+xObkpISFhY24xIw3zRYmvD8+fO/+7u/W7Ro0aJFi/793/9dWX2IHA7H1NS0trZWKXufnm91XFW1fywEAoGDg8O//du/Scvt4sWL5/c6ov7+/iVLlrDZbDywPpn5kqa6frKdnZ3//M//vGiE77//PiIi4uvX8lgslp2d3ddf+wMzEdV2pTwZGRnfffedtNx+9913Hh4e81tuSZK8evXq5s2blXXjFpXlm65pIoRcXFwWjee7774bbZ5/HXueOnUqNjZWLUbJ1UcpC5zXr1///d///YSim5+fP797QQg1NjZKl4Kf35zVmvmRppp+l7KyskYL3P/6X/9LX18/MjLyzZs3X+0A+vr6du7cOY8d+fPFjNMeFzLq8n5LS0vXrVv3pz/96fvvvx8tw//4j/+oiBugkiRJp9MPHDjQ3d0975mrALOuGX27Nc3Orq4//OEP//RP/89f/vKX8PDwr9w0Rgjq6uoMDAyVNavpk6jMSNTXhxrtblL9+3y/ffv2wIEDP/64+H//7z989933ixcv5nCGFbEjHo9nb29fUvKIolT8I/kEX16u5yJNhBACyLlw8eTp+BOnE0+eTjw+6e+J04kqnvTDzxpWDk6Hj8ccjY6fbqvJ285L0snTiTaOTqbm1iei40eeOTvlVtO9hXlPkj/OUzGJvUq6ibbSkf5UnDp95lTMyAcSkzBDuVJQCZl81qZOij0rS4pJiDoZuyvkgIau8Y+/ap2U22QeS8jx6HinjZsXL9FW+pd3zkknTyfkXMgD+KIfwznWNBGAnfvOhILHsYUvRqJe7u+EUKkkWZwueC73WPaC01NsWz99tnNPOpnPPl344kzBaNTHFtYraF+zTTrze5Xvzv3qXZ34Ah4/fe6yPSxeVrbrv/7n/5lJI4X2RWzBWBk+U1Afe+35mYJ6abmav8MYKRsFL07ksz/7u6ZySfEFj9f77hl/wmdd0ucuTXv/w+mEkM4GHAssmBX9XsER36w0657Vex44m8YW0dmIzkZKPx045jHSCdGGoFPjyzaW5mcEjUAz/PfrH4CqxTcvzRebw5LSCCzNBRhTSXPWfIvSxDFzfPPSrPc8cDaNECn9ROCY95BK8wtLCJYmjomBpYmluVADSxOHQgJLE0tzoQaWJg6FBJYmluZCDSxNHAoJLE0szYUaWJo4FBJYmliaCzWwNHEoJLA0sTQXamBp4lBIYGliaS7UwNLEoZDA0sTSXKiBpYlDIYGliaW5UANLE4dCAksTS3OhBpYmDoUEliaW5kINLE0cCgksTSzNhRpYmjgUEliaWJoLNbA0cSgksDSxNBdqYGniUEhgaWJpLtTA0sShkMDSxNJcqIGlOefAy3HPFFiaaivNr1mw1fJL9A1Ik5j6edrnbc6YZnM6m6LN+EoGAZ++1QExQ/6fPqQ5bDv63mlsoBMjDxQQWJqqJc2RokJjT/GNGF8MxhXsKcuY/JNzLoTSfc3isKf6in3Z3ucY34A0pyol85YJMW3m83A6Z8xhFvkTc7TzlwSWpmpJ8/MK1axf9mW/3BP+qkt8G9Kc06md8TeWGj3xk873p348PxnEp/OZ4tg+Y6tJQSmufYSlqaLS/HSRAPpUFvscryml3vf141uR5owxJpoZK/yIzqZmKBY0uUzo7LlUb6col8SkByMHw5xwMNPUeaduy8u1enDzXBGorDQZbMSYzY/ldCVkhm6r0SLKGLlhKm3kebms0MQf+NFvDTGW/zSFc2LP2FeOb0SaFJMgmYQklZCkEuJUQswkSIZcuRnzXd34DafXkOykTryPLjU5TzobGGzEJMiJOROTN6TGb0LR5UsnMVba0tjihFuvjl17x5h0I18agWgTXz/SJVQ36Q1OOtT5CixNJUqTwUZMtmSkwEuYhIgpe0BmEPyYa09PFrXSx0oORZN+F2Yqo2WfXAAAIABJREFU2FMXculWoy+WbstkU4yppUxNKH5T1lFoBJqhwjGWw0xWVWx8E9JkEuS5hy8WG6z6m9byH7RMf9Ay/W8ta7s95yYbZ4rzxx5nN0bd+F7w6TYZX1bSavq2RqacuNND+0TlbrQ4kvTSFq8DSadLufI994yRcplBcH3DYgzcTzFZU7XHJ1VLJ9QsplTnPH/mWJrKk2ZGVf+ylbY/aJn9oGn2V00zaZn/q6bZn7QcHLacXOW12yo4Y3Lhn1yw5Q01wW40Ao2Vq7EkxCSEYQl5IalVScT8FLOvUFZnG9+INCV5D1i/6Nv5H8k6cq48KrssMqfq5M12+XJAm/Rgrmd0osUYbDKrqlXXxCI0903K1D+kE1ouwKiT0G4/+UXb9MidbtpENSM6GzHZkuQHrTF3u1S2FwlLU4nSTGMJj12sOpJTdjy7ZF/Uqb9q24bRbkfllEfmsH4rfBtf3Bx7v48+ru38OQX7cwKlsnlOm7wdg2lnR56cOMlELuep67OEXDuM+JKDUVR8K9K8+KB2sZ7rvrTHIz+PiMEGBkFlsgZ+y33osSfGNTT+YHYtkwV0NqQRooise54n8tOK670PxjuHZUfllPtE0hllrb6HzrqGxkflvcwgOPFXaz32nXYPY56505nChlS2JL2i7SDtmvuemA3B0TvjbtKqBDQC0qoHfPeFa+vorPaOdAo+4xRZQGeNlQ8mW5JV07n/7CXX3ac2Bsdsi76VUMJJKW128d++TEPXzv/k+uC4LfGlOeUfHfcxkm69CInJWh+SlPRwMCz17ubo2wyCYrKFIbEXdycWxhe93Lz/jGtowqmCdynS0saWnKtq33kq3SU4JiihgHavaUMII6FSOL79rpjPHEtTyX2aiMFG6YQgNvPSf+m6xd/rk9YKM1m87TEXA5IrGATFZPG3HU4+mP3oWG6Ze2i0Z3gmo5yTxeo7RLvqEnxq66kr9GoJjQ10NsogePRbT30PJboGx+yILaBXSxgEMNhUVm3fYWahW/BJl+DorScvxRb3H80pWr7SzNDWY11w3Lo9zORKKpUQxl+p3HY4xTXohHsYI+ZmG50ABkExS9s3hfyWePfdzt8yXYNP76ZVpNfyaMWv/cKTXEISjl9+TSOAzkapLIF/FC0s7d6J3Ar30Gj3MHrivV7pUSnrs/2GpPmz3tqI1LIsFie7lpPJEjAISCe4e2IYf9azdvA9uGbrgR9N1rsdPJ/ChkyCG3z4lIaF85JV7g5bDtrsiNt3IkXfxPxnmwDHrWGr3fx/Nl4fwbiubb9lnf8hUwcPDduA5GpIJcShKddNXHatC4hcvz1CZ/Um8y2xtFqUVjsYfOw3HR3dtdtP+EQwfWMf0lhjx5bJ4mzatX+Zxab1AVFOgUeN3I7uzalnlH/027t3mYauS2iCV2Tq7lTi9/usxQarDNdstdgUZLs9JqW4c+uBY4abjjFZklQ2d5P3Vos1m7XW7lrrf2iV6/YfDNcfud7GIKjs6lYLl626VpvWBxxb5R68fnPgz9qOMaXDWJqKRgWkCXQC0ghhbOal/9LddOZ+v/TJc7W9jh7+dkGpDIJMq+2ztrWx8QjWdwpy2h6mb+Omb+fnui9uxcag9dsO/Gpk43won8aCDIJ7NPv2/+hY2Xjvc9p+2NjBW299eHKlKIMY3H6U9ouJwzr/I86BR1d6HPRLqIzJv7fCfLmZg7d3RJrX0YspVSi9lrvac7e93wHnwCM2nsF/MXE/fKmRzibTip/qaunoOwVbb9671nf3n7WtQ0/nmm4Mcdx6yNZ9x5/17KMK2uhslMYasHNwsFy/RWdNoFNApIVrwA/GLsdvdmJpKrboMAlJ3oPapfqr/6Rl+0cdhz/qOPwfXZeognbGvRdLdFf6x96hE5BJDB5JylpsaJdQIclgcXcfPvmjjvXxq+/obEhl88NO05Zom/1W+JHJps7VtNg42i82dU0u4zIJMvN2zV/1Vh+92sZgUxkEN4PgZRC8bNbAlYfVi5dvPHK1lUaQ2ZUfDUyW78l9ncIG+vgGS05Nz/LVFruTyhgEMNhkOkvCJCg6W0y7zdbQMjxyuzuFDUw2eelBzRI9c/eD2VLTZddyth44arjpOJNFprK5G739fjFwjLvXx2CTF2rbVtit3RB5PY0Qnz2X/2e9NTFF7XSCOl/dYrN+/Y/a9mPSVGRgaSpfmmyZNP9TT16aPY4e/raj0rSx+8nULamUm8oW0K6XLtHUsPY/zWBRGSzuGWbGH/U94kt5WWWvlppaHmaWZLAE2SzOxZKnmgZ2e7Kenq9tW+nku/VIHp0ABptKJwQMAtIIroub+9qglMSRn2QmIclmcTIJXhZrOK/2vfuWEMfAxJQ6Kq34qY6W3pYT15kEyiJ6PbZ4/6BlEZbzlEGg85UfDFfZuR+7ySBQGmvQzt5xse66M8V9dDZ5vvqDkbWjXVAGg4WUNYb+DUhT1qdZ+6u+zd7TlxKvP0sqfBJ//XVqJf8o4/xPxh4pI83VnEf1PxpahKTXZbK4QYdjNB32MFkknQ1MtmB/DF3fcmMCG+hsyCSG/IID9JyPMFiIzobciveaqzbsoFcx2GRW7eDepGtLbf3+bOa21GT1/2jb+ceX0tnUBGnKR1btgPWGjUut/A9kVGbW8tJkg+xi2m32Mi0DeWn+Wd/58O+N0kPNYsmkySDIVDbXzXuLje+JJBbQ2ZBdO2DvvsVud0YGi78l0F93/UEaC2hsyGAPnD73+2IdRyzNr4CSR89HhDW9NJkj0rTfcDA3mQ10NmSUvPpZd9n+zHoGG1IJcU5Ryf81cIm+2xVz/sYvWlrGrhHGmw4Yu+03c9u9VNfM4UBeJtHvHHjoF7NNe+gP06o4aYSYzkbMidKk0glB8u2G1T4RfzZz+8tyFw1dA2PnvckESit+qqFtHFHYLu2kOpES/7flm5LLxXQCztX02WzaYh+aziSodNaQnb2jrf/ZFBbQ2Sib6NsXnfSreWBytQhLU5FfYFmfpsu+NDadTTHZJIOgMli88LjUX1ZsY9ZKpC+7UP7u1+X2WxIeZrKGdx6J0XI+lEpQdDYw2YIDMQwDa/e4x0BjQwYx7Be6y8A9msECulSaq10CUsoyCY7vvgjN1Z5hzHvHcmvPni/UsvDYcvo+rY7MrvxoYLx8j3QgaMKxsUW0e6+2Rybor3b6UddKb/2BUzc7aGwJ7TZ76Xhp/pfRhhM3WqRbZY5IkymT5lbHwDOJdUBjQxaLY795u21QagaL6+bhZu5zJoUFdDakszkpBQ9+1lkzSZqTZszNy2eOpanSNU0mgyBTWX3WNnbuxwvO1gGdDemlrxfraYede8dgQypbkn2j5P8aOEffaT/GvKijbxCZWhaZ8SAy435kxr3DGfeOXW+jExSzpDn4ZIqJvdtf9VbrrtkZcbkpdbw0U9kiWvEzTVMr9/20qHPVJ/IqfQN2Ga3bncxC6feeLtMxHinhkt9Sk3609E2pRHQ2ZNf227hvs92dyiSoNNaAnb3jhgPZSQTQ2ZDJ7j+efmGxkVdipSC5buapUYqKb0uae9Mfp4yMxKUT/FPZVxYbbDj7aJjGBgabzChm///svXdUE12/932t89zrnHXuv99z1vue53nuet2XvdMRpSsKKmLFywKCYkGxgg0VAem9JJMeioodARVFpQgks4fL3nsvdEjPzH7/SIDQFJQQwd9nfZeGTMmemT2f7D0tI22c9xx5KCRbN4fFmS8J1UmTSyl3xxE2s5cn6qXZumbHFtsVcWwpZndIsyxLWufqOc8nooiLGA6lySu9McF+cZs0X9tOd9yRq29pdj7lTfOQmkeqBGQr67zEftaSRSHCtD8Y1oWayRa2YRc+sXTSLJH81W5JZKFemmJpc8CuSANprpsXmJhag9k6aa7a6LGFJ0CKoJCdk+dsY1XTbAqLUF1YBn+0xfx4nTSNfNodpPlDSTPpcm/SnKuTJqGTpo3l3uznbIS5SCMuKPuL7eLYi++T8i6Ns7JLKvzII7VcpOGRaj6pIhAmKIaL1DykEiIZu/iu+7LV01bH88lW7+Ur5m/JTKMwCzECqmlHHMti9iaORMlFGhGq9VkfZLdgu66lqZNmRk27NNdkVuqqt4E0pQ1z5no6r4hkSTGbwllk7YZ9kVPcd2RK1KZaqz+VNL0Npcmh1LyypzZO7vO3EuwqhaDqw4bQqAkOi9OqsEAnzcWh7S3NXZ2kqWtpxhGdpSki62YtWjR/C4+QKAXVnzbuOfCvKTPXxpewauis6g/TXVwCMyq7XlSPGC6piDt1O7OimYtU2VVPZi/w8drOSavB3Et3p1jZ7D/xlIO0XKTpIk1dS9Nmhf6YZkdLEzFiabPnqo0eW/hcpOKcuTjCes4eIeJKVbwr96e7uI628ARpDgI/UPdcdELf0kSYhfTSnNO5pZna1tIcbW2xN/sZi9JJU9fS/Jh9/aXjXG9bz+0Jl2u5pJpb1ZRw+l5yWTOfbD18+l5qWTOPVImr3i1fv8VuVQyPVPhu2OC86mCmRMOhaAFqCc0QTbT/Pb74A4+Us/KvTXVwsFkQnEnqu+dhFw1bmmtYXaRJ6Vuao808QnPucJGSuHjT3H72srD8tgfimGD1/jzSJEdbLzOUJpuieUgel1s82tZlpJnjCDPnX20XbeNUsyidNOPbW5ocShESx7aZvaJdmv7bt0xdHkdIMRvhI9efm7kt2cAq5yNZSJpojJXDSHOHXy3c3b3XWM3yXxtfwqKwkGxZvGbjKAuH8XbuZt4xLEnHzRj86job13mjze1HWbn8Zun669SVkfmvWRQWSj5OdfMYYeY01m6+x7as4yXor3behwvf6iYUks0BuyMMW5qegYm6K+PE0ua5qwI9tvA5pFZE1nsH7h1rYT/K0uU3m1mBoQljLRcklLeyu7Z2jbDOQZqmliaBMJ9UJAhP/M16eVJJHYEYQi/NDXO2EByk4UnrZulampSupflotLXl3uxnBMlwkSarsPT/2C6OvfiBh1Ts4gcTps0eZeEwytzhXxYz/2Hze1j+K7Hko+28lSMtnEZbufxm7jTCdtHuIw8Iis48dWm8lcNYyxljXdemlyqzJO+c5iweaWE/ytrtH7aLfvf1m+a1tV2ahy58zKQwQWliOOljXP1Zbd3zOSvWzdnK5SCtTprL1u8d47BolPn0EeYzxs1cl1YuY3/9ziVj5aeQJkExIklj3LkX6dcVbIMLZQnE8JGcKH2dlH874dz99Gu1utrGo7SZ197GXnzfNqaWVfo+4fyzdJ0OkCbjytO4i5/YFGZRmI9k8eefplS0silagFoyLj9NPHs7qeipsKo+4fzLlLIWFmI4SMuv/JRSeC8h/170+Q+GrTwuUnGuvUwtvJeYfzuh4HFmRYuuKcql1LyKjykF9+Pz7ydcrhNJGg8XvsiQqHU7Axdp0q+8jiv+SCCGQNr04mdJlz+x9DPUpBS/SCip1ZVcJG1Ov/Ao8exd9sU74awjE5zWp1erv/xQuwEJSNO03XORVFV2+f29wgfHrr6KPvfq7LW620VPykre8UgVp+jRhZN37hU8OlLVnFp0P+/8q5vnn5eWvOdJW9PP/nGl8OXdwidHquTCqjpR3o2b+Q9Kr3zgIvXRsncluSUkcZp7+lbG1U/nyurvF94pK7iRWvSQdbrmYtbVW3lkbpWSg5ji0te3sosLs0piC55lVakrL798cLKce6YmKf/u6aInd4+UnDuGWBRz5HrtRXHJH+ceZUlUHKQ9f+lupaCkpOQzm8JHq1tKjpVLjkiyJQq+pN7P1YVYE1xceDcp/w7nzN3Koqe3i55kV6tMddH7TyFNNtVTb/Q7TaG/9bX9i45hoY5HFXzts772nE2DSdqv42V1Hmr4Zy+nERkeat4jKOeXvs+R1maeKbNwnrc09EyXaY0UkKYJpZklUZVc+ZQZdkwQky84mHu/8HH6bqEg5mzm/pz7hQ/vFj4mDh3jx+SLwo7eL3yYFsIXxOZnhGbfL3x4r/Ax51AePzY/K/zY/cKHKTu5HYOKHnHC8/ix+dmRx+8XPkzawRHE5Gfszbpf+PD2uYfc8Dx+bH7u4RP3Cx8mbmcLYvPT94rvFz68lf+AG3GcH5t/NPrUvcKH8VtZgtj89D3i+0UPb5y9x4s8zo89mxd7+l7hw9igDH5Mftoe0f3CRzWn7/AjTwhizp6IO/PwXM1uW9sQ712Je4/cL3xAnbzNP3ySiC9IZFcJSC08T9OYMY40DWLowa/e6N0PafY29KvSJCiGhxpnrQ37l93if9h6/WY3f6bfoeQyWW/jD2xAmqaUplS1PfRYfnlDjkR1PhclBKYUnXmUWy0vKGtICEw+vDmzoKw+W6IsyiYTAlPO5z/JrVIUltXrBp0rq8+pVhVmSRI2pVwoeJYrURSV1icEJh8OSj9X3pBTrSwQVcUHphQXvciVKIpK6xICk6O2sHWD8gXX4zelXDr/Mqdacb60LiEwOXobkV/ekFOtPMsrj9+Ucvni62yJ4kJpXUJgcswOrm7QGU5Z/KaUkktvsyXKC9fqEgJT43by88sbc6uVp4mriYExfk5zV+7JLShrSgxMjg8Rni1vFEo1ZypaBKSW+OqeYoT8NNL8KUNQWjHZlCv9nCupFZOtg/m1DNL8Ec6eD8l0qqUMh9LkSj7zkbr7Nc6mCkhz2Caz/Ri5KQ6WgzRBmt+fH+1RHbqANH+iDOapRpAmSHO4BqQJMUpAmiDNAckP+PNBIM3hGNTpee8m+dE+kCZI89vT0wNnf5yANCFGCUgTpDmA+aHamyBNiFEC0gRpDlygpdkGSHOwA5ccDRYgzQFJWwPTZM8b7jEgzZ8pIM3BAqQ5IPmheuXtAWlCjBKQJkhzuAakCTFKQJogzeEakCbEKAFpgjSHa0CaEKMEpAnSHK4BaUKMEpAmSHO4BqQJMUpAmiDN4RqQJsQoAWmCNIdrQJoQowSkCdIcrgFpQowSzvV6360Hflpp/nETpDlsw0cq7yATSnNdmF6avd2sMrA3sXxhbjBoQAdxrjf4bj3YozR/BpN+RZo/3vaCQX0fpJfm99Xj75QmfBsPw3Cu1/cmzZ8B6J4P43TvnjNd/u8D0D2HdM1PfEyTxiDNYZ2ejmnS/a0lAyjNH+sZUJBvjk6atMG2/qkAaQ7j/EAngkzygHGIkdJFmj8bbdJU/GiPNYN8f0wkTUb/z7x1BwWkgkAMQUGGVbjX69q65z+jOWtu3fHZncZHSoKidT9zb/ItAhmoCEiFKU8ETXdftG5Pov/eFP+9qb38O1wHpQ7xQV9Z8DUh0f4bgr6rWg1RGIwxvnHztp3bgoC9iWv2pfjvS/HfBzVkmAxasy9l3d4E5zlLOm914x/TbHf0k2fPb925f+PO/Rt379+4e//Gnfs3O6dj0N2BH3RjIAbd/OZBfVlqI6yQwVnqm3fuKZXK/laMYYG+dt++c/fmnfs379y7eeeeEWvI8NsvfvgVcuvOvSfPnvW40fvOt0sTAIYZzLdcfwL8dHxj9xwAAODnBKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaAAAA/QCkCQAA0A9AmgAAAP0ApAkAANAPQJoAAAD9AKQJAADQD0CaRoUxdQGAnxSoecYDpGlUoOoCpgFqnvEAaQ4KTLcXAAAMTUCaAAAA/QCkaTSY9n8AYDCAyjY4gDSNBdPLawAAhjQgTaPw8tWb7bvDd+yP3bE/Rvfvzv0xO/dHt//Z7d8e3/xpB8V8cdCPU84fblBwaOy2vYeevXhp6j1gOAPSHEDo9jZlTBI75milmGwWkS2d0/0dCGTAIiabEk+SByJjTbsnDG9AmgNIhzSjkonwYzUcimFTmE1hNsL6FxCIMcNBdMzp26GRCabdE4Y3IM0BpOPQZVQyEZ5nIE0IZFDCQdro07f3H0404W4w7AFpGgW9NBFt8r0I8lMFpDkIgDSNAkgTYpKANAcBkKZRAGlCTBKQ5iAA0jQKIE2ISQLSHARAmkYBpAkxSUCagwBI0yiANCEmCUhzEABpGgWQJsQkAWkOAiBNowDShJgkIM1BAKRpFECaEJMEpDkIgDSNAkgTYpKANAcBkKZRAGlCTBKQ5iAA0jQKIE3IgIZh9+05BiDNQQCkaRRAmpDvDdI/HIvVlr5MBdIcBECaRgGkCfnefNPjBEGagwBI0yiANCEmCUhzEABpGgWQJuQ7w6IwC3U6jslCTJd3ugekOQiANI0CSBPyfWEMD2LykJKHlH2ZEKQ5CIA0jcIXpMlBGhFqzpY28ElN+5tcSikgZbzeJcuq0TcxiE6HumgBJc+V1mZJZYRBG0REtghIue6gGEHRPEnTip0Je089z+h9F9WNKUQt2WSdkFS0DyIoRkw2cJFatw93OR1B1GDO1SfuQWkppa1d5klQWjHZlE02CEhV++E5AtFZZAMHMe3v8JEiR9rIIdsmrGGEqFUklXN7WhV8JMsiG0RkKwe1O4UWIDmfVLUvPhepssiGLLKJRzK6ErIR5iGFGDWKyVYO0nZaqxRmUZiHVGKyIUvaxCPbP5TmI4WAVBpsQYZDqcVkY460PkfaICLlHFLbbXNggtKKyKZsaT2fVLE63qSzyAZCX2ZagFqzyCaifZEphkspsqVNAlJtuEUISiUiW0Vki0jaknv92fRl29OKX4vJFhHZIiRl3F6OeII0BwGQplHoTZocpBFKPs7fEDZulr/ZnHV78x6xEWZTjLj6g/u6Q6tTqlm97Awd0mxzHJvCQmndhije2Bm+Y2f6ro0uZCOGTWE+at4Ue9RxTWJGmzSFVe8cXNw2cmvSexJfmzQZseT9spDEcTNXj5m5eidXwkIMQdFCaf2S7YkLD5zMQD1PKzhf8a+pCxKL6zu7g86ufjlr7f4Js/zMPIPC8x5lUphAWmH1Zze/sHWZ7YvJZBQ/GmU1Y1fOU71Ga+ij1a/GuwasjLzQ+bNoHmrdxy2cPGft+Fn+87dlZEoZ3ZdN3LErf3fbmVKhbPvCaJy/duc/LGbP2cJrN2mO5J3b8g1/sZznn1pqeO0Oi8JcShF/Gk1dEDjBI8DJZ39cSQMbYYLS5JQ/GDNn+4Gzb3Xl5CNZZNYF52VBf7P2/Ivl3IkzV87bzsuU4O5L7R5wcMIsvynzNoflPcxEmEBaQfWn2f5h6zIlOmnGnv3jX1PnbieqdX1tgtJkX380YYbfotCT+tWCMEFpWdffTFuwyWLeRnPPjXYeS0ZZOJjNXmvmudHCc731vADv8IsgTVMB0jQKUclEeB6lk6ZhY0SAmnelZTkv3ZZd/SGGI/6bU2BGlZqPZGG8c5ZzNmRIDNtBNB8phaRMSMp4SNXjHpJ2pnyyoxv3er2w5PZkh4WRxR/ZFJ1VemfK7A3R597omlEEooVVbx1cZmziSjlIIyJlPKRh13SfGx0jOGbr6SOoqmOduz7WziuurIWD1Blnrv1m759ytandMmyKISiNELWKSDkH0T1Kk4PUBxISnVaFiKs/7UvNnuLml4y0fCQPzThisyiUQ9JtvqC5F26ZmVvuzn7S1vZkTlc+sHBeuTrivKE0CUqTVflkovPSQ1kVR8rvm7t57zv+kqC0gsq3M5Zu2J19t/0CnWzp52X+6ybbuE90XJFS3qrzFPdcmYWNzW9WHgGp11ht0tSVIVv6fo5f8JoDgiOSt3NWrVsSdo6DaAFZv3TDXt8IvcU4lJJXet/cznHW6v0ZFx7lVL6NEhXN3piWUckYfpFwkCosIcVpZYi4+vP+9NzJM3ySpRo+ku9nHbVasJcr1X0uI0IN22NYv1l5xl6qJShaKK312xIybub6tHI5G+lrC4dSccoeTLZbmJl/m138WHzu2hT7OXG5VeziR/yLt3wCd3psyzVoq4I0BxWQplHo3tIkECYonCWtW7IxZEX4KT5Scguv/e+pq1Ku1edWPTNzXxN19q1+90OYoBi+tGlL8qnJHmv+ZuM1xXNL0sX3HfLVNyGZSO5puzlLU2qwmPzssXBJUNYtHmqZ57vN//DZjPYeMUULq946urhsZxUvCcn4h91C66V7Uq/Ws9saNW37vHZL6GGvjZFpNTj7+gtLe+f9hW8FkloHT9/9Rx9mUphNMSxEsynMRRpR1TuvTZF/tV5gtzKCc6rYQJr65eWRqt99fdfFn02nmIzT1yZNc4uvUgkr31q5LT9c8M6g38q0SfNphzSr7rVLk4u0IrKFi7QcpDlWSv3TflXS5YZc8p331rBVsRcEZNOWaGL6yjgu2XExY7b082L/ICfPzW7zl6xJK2dRWEDJ1gRHLFnpP9rROyD1CoFoPpKLpa063x2vfmI5b234qaci1LgznuWyIU1Aylhnr/19ml96mVx3NoZPNe0nBGMsZyeUNbMMN2inbgHDQYoVq/3Wxp5Kp3DmmfJJdjPiKhXCynfWs1ZEFb43+A6gs6re2M7wcF+fypfKU48W/mbuHn7qaaah+/TSXCYs+ygiW06U3ZrstCCl8ImIbDkq/ei/fZ9Omt0b/iDNQQCkaRTapckyUAlBYRHZtCtNZL98v1hSH8vP+5vDBl7lR789SfM3JbERw0Ua3Q9YciituPzZoq3x+3mXo3KvBR5IHmXlceDM207X7iEm9Uz5RCcPdpVMcPWxpYNXzPnX6aeujXLblFHaxEMqDqJ1HT1h1VsXZ2crx8U5Od6MAAAgAElEQVQ+ofzonCuL12yf4Lwq/bpBqxZhNoWj+Eet56/lSmTsopoJU+emXqvdlSy28g7nSZVcpCIohqAwQWmzpB/cFy+fOn9jpLj0QIp4+gz3f1obtDSRvs21Lz7BaXUYX9JyIOO4xcyVbGnr8u3hXsHZfFLFRWpC3zCkuRdvWZibHcy6I5LKxNJWMdmaX3mnXZpistF5yUqXjWlcpM6pfDDaecWBHCq34oml+8r9R+/xrjyymu0be/E9F2naD1ZmSz8v9t9q7xW86UCM/coYLskckz6xnrM+NCFnrOP8gNRrXEqZcYEcbTkjKPtuBoVzpa9n++9aHZ6XI/04zzdo6f484fU30+b5HTx2l4O0XKQhEOZRrQknzo81dw7KLOeTSh6pJjofeNE3D5EmNCHJyecgX9J6kHXSzHkZRyJbuSPCc2cWn1Trl1r3pYJa2eclU+zcNsXn2bktnLddwCIN7/mhCUrDLn0y1mrWhGme4+znT5nmMsbcdvz0uePtPcfbzxtpM2v2tiMc6J6bCJCmUejhmKa+eagRVH9YuHarhdsyq9l+e7LvcIuk5p6BqZde7+FfXraHu5MnZSGGTTE8pBSgVt2pgONVL2ct9V964FTbQTr9bIXS2g3haWbOCye7/r464iSv7OnUuWvCjtbEnrnpE8pZG3uOLdWyKVpY9dbZeabNkjBCouEiTXbpfcuZS7xDT7EQ0z4rNoWzJO9+33bI3HXRRJcV2zKvsS89mDp3bcL554dyKlbsZW/OKGWTDI9qjTtSOM56XnTRWw7S8qmWTXsOjLD06OGYZuWzOb7brN2WWszZcPBITWpRje3cgLSSN3s4F3/fzQ4WUmySYVMM5+KtqeajR01xGGmmz7gpViMme/iGn2dTWIgUQUm5m4hKAtE8Sh7KyrOZvdTCbYXnpkRBddOCdcE+kadZl5/5HhSsDDuSdKW+XZp2C/alFVZNsF+RXtbEPlU8xsVfcPHBeEfPgNRrHKRhlb1cHcoNP/8hk8JcShV/osLB83dr91XOv+9KKn4bHMex8zksrPy0Iebo8lBR5NkXbESLpJ9WBYWMMne2cveZExDmH3U65WpD90McOdUv5vhtt3JbYu6x/mBuTXrRH7ZzA1Ivv93Lvfj7bnaIkCJ0p6corQg1btgXNtZ86iS3Taxqdaf51GAOovmoVSSpF1c3CiX1x6/dmOS0IDn/oVjSJJbUiySNPIm6x6vfQZqDAEjTKBhKs61VpT+IxkFaAZLxkUKA5NnSd85Lt25NPrOXODfZyXtdVI7ZjMUbMqUcRIskH7fF8azdFo6xnTXZzm2shaPLmlTdLmfgJi0PKYWknE8qRGRzcFz6dJ/YrJI/Jrr5rtidOfP37XMCEtIRLax65+g80y/+qu4IXQ75xndnmLnHrvS2k8Us/f6m4evmhhRZZP2yzXu89+Wmn7j06/Rlaw5ybeauX33oJB+1rN0dYT1vF1uq1Z3CIk5f+JfN3C7SZFOYi9R8pBCScj5SiqveTZ+/PJhdtidFON5tXWCUcILD8mCeJKMGcy7esjCfskdQwy6v55TXEuW1J64gC+cVqyPOs2swgRguUrWZXfdFIucjhYhsSjp9feq8DZklT5y8AuZvSfTesNtm6f70Km2W9NNi/622C8KEks9eK/38oo4v9t22dJcgq+KNTpq6dhwPtV+6wHCRSkC28pFCSLayim9ZzV6Tdumxl98u11V7fULiJ8xYnVKhJpBWiGSp5x+sOyx299th7jDLzGNDYklTl7PnXKTmUwoB0i31e/sFq3Zklu5LFY2buWZTtHCC4/KdnOoM/bZTia4/tJnqtCryIhthQn+UmWFTNFGDBUi+ZvehERZOY63dxti4TbKePnaK9Vhrl3E2s8bYzhhj4zbSzjf9uhy65yYBpGkUopKJ8GM3dB1kwzqdiRiiRmdPhosUqdlnzReEZFe+nr12T2DyBTHZEByX6bAmhU8qk7Ly/mm9MPzYLSHZnCd55b12q/PqpC7SbBcxFylZxTcmuvqxypr2xMR6bIzmkFqikBxpMT2qrEVQ9d7R2W19enWm7lQJertuX8ykmVvTyG6X9SBMIMxHrSn5lRYemzjXG9dt37780EkO0kbyTtjOX8slVT7bQqcuCuNI9dPyC0v+ZTs3sbi+t5ujhajxID/fdsFOQVW918rlgZnXeUi5IzzGPTA2lcKci11PBJ00OKZp6PS2JjZDUIyw4uUkR4+DR24dzimcMidIIFWcrr43yX3d/hNPdS1NmwXhfLI1PJ0zabrbSJsl+4/ey77+YryjZ0DqlfZeMGFwNkx3FEVMNixZt/33A3nCKzf+brsk8fzrPMkLd7+dGzOqCYohahgO0vKQUkDKcy9LJkydvyjkaEZND5egsylGiBrDRUW2XjsFVfULVq7amFHOQ6rgiDj3DbFp+usE1MLK51PtXHzjSg0vmWDpV1rr2uD98zdnZktas6TNJ8tuT3ZakFrwOEvanEXWC6/enjBtdWaFrPsF8CDNQQCkaRS6dM87tUeQ7koXDf/a/RF2yw7nvzwifemwbHNI1k0hag7nHbFdHsmTtgZs3Wy/PIxNYjaFs6vfTnWd7eynl6b+1HPHNUC0CDUuWRey7NA5LqndHBKyeA+RWoO5xTdHW1pGXGkQVH9wcp7ptoGjE9OR6pczlq51XpPW9fYSpJOmVlT9YarH8m38m3xSvszfZ2NmeQaFU44WWnosYyFtaLp4wrTlaRUKFoW5lCoinRhh5dGbNAlKy718f7zjwtiLDSJp4+yF80OO3s+gmKgMlvPq/amoXZr6E0FETfvZ86K2w8GdmsNsCovJ+h2JOa4+UVyJ7CCRY7FoLxdpT0geWC/YHCy6qZOm9YJwDlJySm6NsXT4p/2GjOvq3OvP21qaDBvRBMUQqJM6BUgWn3fVxiuYXSkTXqr6i+3vyVfqj0hfe2+PWBmZT1BqwwU8Vf1w+uwVczYSGZ2vQ2g/q8a9fH+C48KYC3UismH2Iq/gI/dYFI7KYDv7hqbq1jOlFl5/PnWaq2/ste7XmQlR67qQ/Qs2JuRc/5Bd+e74FdLMcV7a6Rs5le9yKl+JitGkNmlCS3PwAWkaha/dEUQLUNP6fXFzt4tYUkaMPq0MjlkYGJ8r+bQyaLfHtmweqQpLThk9bUHimbs5la+3RKSMMbM3aGl2utKQj2Th4qJpS/ZkVKkIRCeKjljN38CvrIvNvjDSZl5ipUJQ/c7FxXm07YJDOZIcyftdccRIW8/Iws89lk1ENgYnZc1aG5cp0XKRYk9svN3y0Kzq2q3hmY7LdmVQjLDiqa2T++Jt6VlVn/kXKPuZ7r9aeSZ06Z63WSCL/LgiOG5ZiDgTMUKyZdWmoIXBvBzy85I1O5buFaXVYE7xLTNzy13ZT4m2zrKhNPmodcXepOUxBe2LzKFU6QVo0owVyaUyLlKlnque6LSMV/Y+r6R6pNPq6It17dIkkJaLWhPO3o0tek8gnFPxrO2YpjrzyiMPv9DQM6/aT1gTlEYseW/jsXKn+A6BtMKKx2OneUXkVB8tv2fhsSrs+P3IYyULguIOHyPF1z/wrz5ev3P/bxbztnCozJ7WYTb5aVVIwpJgYSZiBGSzT9BWrx1ErvSzd0Dw0l2CdP0nqoWVL2zbpNnlC0xItqwL2feb7eLxswLGz15jPdNrlJnDeJfV42etnTDbd8rMRWOtV2ZWyDK7PS8OpDkIgDSNwpelSVCayFPURPcNmVVKFsIcSpFacNPOa72512abBVsOF34gkDar8rn76h3/sJn3z6mLPPx2z1uz394vldB3qA13FYYvbbCY5xecfVd3rVKO9M28DeGTZ68ZPytgF59kUQy3+rOt6/z14TxLr81/s54z1vn3NdFnWKjH5+jQqRcfjrBfFFtcz6Ywh9Lwrj2YvnS7xbwAs3lB4ccfZdZgPpJFCPIt3Vf/xXL++Bm+O2M5f526PPFSj9Kko46WmXkGZlZp2RTDReqks9VWXpusvDbYLNwde+FDZg2TWfxgtJVrSE7HJUd5VS8nuK7VXdwuRM0OS/ycAtPaL1Pnk01zAqP8D5/I0H33SBvXH2SPmbl6vOsKn6izLIRFZMO8tXvNFx1m686nty2j6PrbkY7ea9LKOJQy7WLNCKvZW7Lvtt8ixUPy9XFH5m5MSkdaNsXwKNm+jNMTZ/lN9vD32JTEkaqTiyg3nx2jnZb9X8u5f7d0t3Rf7R91hi3ttmVrdEtdMcUzMKNKy6YwF6mS8yVWXpusF2ywXrgr7nz7tUdaXtX7KfbzV8X10NLkIWVQrNgn4pRY2iomW06W3Z7stDC18KmYbBGTjcLy14uDxZnV6u7X24I0BwGQplH4sjQ5lFZENnFRxzlTLqUSo/ocaT2P1Lb18ugssjFX+lksbRWSShHZxCM1unt+ut4qU6PMkTa2361MUNossvGItFZIKnTXonORKlday0WaLLI5V1IvJBXtF2l215wQybLIprbLPBkOpcmS1uVIaw3uC2S4lCpbWpsrqeeTWhHZIiRbOW1S61K2LLJZTLZm6kXPcCl1trQ2R9rAQ1qdKQRIniupMzx8ISRbxFIZF9EsCnNIVTZZz0Nqou17QoBkhh/HphghKcuV1Aqlct29lTykEkubBFKtvl+PdPdQYT6Si8hmDtKyazR8qjlb2mhwjSrmIaWYbOJ1XEvA8JAsm6wTky262XIQLULNOdLaXEltjrSJh9Rs3d1Z3dYhQdFiskVEytrXoW6ps6V1PKQ1GJ/hInmOtIHT7dtLdy8WHynYbXeLZlc8H+28Kq7ok17NiCYMTi2CNAcZkKZR6OsDO3p/ZmKX/YHo4R6ejpnoh9ZgFmLaBUTUdEzVffKenpfDsCmGqOnU9+9LAXp4Sm7nB+h+ZSX0Pls2hYkuXVfUsbxd7/s2sE+nGwH0c9AfCCZqup5Z6unT6Y577bt91heWqMtVXF9Yh0QP31g9rwE2wiJpC6/8c4/343cJSHMQAGkaha9L84uPmO2faLremtKxA39Jtd8dfWOnpqt3iO7m6uyj7u93aZ8anv/pec6dl6uHxURfGkogzCa1ba8Zgur5e6LHwn91232hYB3273YQ8yvzoToV8gsBaQ4CIE2j8BVpIgPp9FNSXw3ri38aMd2L9+UCd+2W0gYvugqi67L386nmhg3evqyQ3scZ6Gf9dWlv9t7k7KFIPbXlQZqDAEjTKHzlRNBX9vmepuqfJvr6O1xfUcbXP5TuvYfb6/K2XUvU5fjst62rb1m6Hp34RZm234hF96WxyerbOjRYtC/2SFA/ygzSHARAmkbhOx9CbNgs6nqssD96+pYxu58j6l6wrkN7c3SbT9vn+a0G7M1o3d7vekjx29O3g5hfmrDHYyY9z+3bywwtzcEHpGkU+tfS/A6btO/SBOppzn3wTvtOy6rpyX1ftmfnhSLQV/b/3orXi4t7KmTbyKyaHo97Dpg0uy9gp1M6CHf7qqDbStVtbj0uV08Hdg3bp19dmT1uUJDmIADSNApD7ecuvr0vb8xZfXnO33UIwmjFG9gi9XtuIM1BAKRpFIaaNCHDJCDNQQCkaRRAmhCTBKQ5CIA0jQJIE2KSgDQHAZCmUQBpQkwSkOYgANI0CiBNiEkC0hwEQJpGAaQJMUlAmoMASNMogDQhJglIcxAAaRoFkCbEJAFpDgIgTaNwOJkD0oQMfkCagwBI0yiANCEmCUhzEABpGgVd95wY8CeJQSBfDEhzEABpGgWdNAf+8YsQSC/RPQyFg2iQprEBaRqFqGR2RB7JQyoO0nAQzUGabtH29OYPNQjyQ6VPW4qHVLGnboA0jQpI0yhEJ2X470sNzijcmVkQnHE+OKMoOKMwOKOoUzIL2/4tDM4o1P9p9EFFXxqUOXiDdvZWjMyiLcmng5JOt71/Xj9+ZuHOwS3hVwZl/DiDCvVFzSwMzihcfyDzYGQsZky9DwxfQJpGgcH46MmzR06eO3ry7NGT5yC95cjJfN0LFi8rIHCbrYPr//uXf24N3ue7NvD/+f/+OtHcdt6iZSH7DvHERzumOmX6Yv/IOXbyLAjTqIA0jQpt8JrB8O2PMcaYYfTrQS6Xv3jx4vjx466urv/rf/2vX3755Zdfflm+fDnGmKZpT0/PX9r405/+5ODgkJaWdufOnfr6epMWH/jZAWkOGH0wItNZoz81O3fu/POf//ynP/3pFwP+67/+Sy6X60ZQKBR/+ctffunMv/3bv0VFRZm25D8i3SofwzDwNW0kQJqAabh79+5//Md/GArxv//7vz9+/Gg4TlNT06+//mo4zoQJE9qtCgAmAaQJmIzY2Nh2G/77v//76dOnu49z586d//mf/2kfLSQkRKvVDn5RAaAdkCZgGioqKlatWjV+/HidDUNDQ3sbs6io6D//8z9/+eWX+fPn5+XlBQQE3L59ezCLCgCGgDSBwUapVAYFBSUkJGCM37x58x//8R/Ozs5fnuTYsWN//vOfdZ13mqZ37dq1Z88emUw2GMUFgM6ANIFBhaKo6dOnP3/+XPcnwzAZGRmfPn3qceT28+w0Td+6dav9fZqm3717t3Dhwry8PCOXFwC6AtIEBgmZTBYSEsJmswfqoCRN0/n5+QEBAXfu3BmQGQJAXwBpAkaHYZgrV66sXbvWsLXY3or8Tpqbm/fs2RMZGfn58+cBmSEAfBmQJmBcmpqaIiMjo6KiaLrjGtWBMmY7nz59mj9/flFRkVqtHtg5A0AXQJqAEblx44adnV1LS8sgfBbDMOXl5RMnToQLOQGjAtIEBoAeW47+/v4CgWCQFdbY2Jienr558+bW1tbB/Fzg5wGkCQw8uiOYJjw/c/v27W3btolEIlMVABjGgDSBgaS+vj4qKiosLMzUBcEY4xMnTqxdu/bmzZsDfggV+JkBaQIDA8MwDx8+dHV1ff36tanL0oFWqw0KCjp48CBcCQ8MFCBNYABQqVT+/v7Z2dkqlcrUZemBd+/eeXt7t18JDw1P4HsAaQLfy+XLl017BLMvqNXqwsLCJUuW3Lt3z9RlAYY2IE3g25HL5WFhYQkJCUPlyUMajWbfvn1RUVG93bgJAF8FpAl8CzRNkyRpb2//4sULU5el3zx//nzRokXFxcUajcbUZQGGHiBN4FsIDAxMTk42dSm+C4TQyJEjuzz2GAC+Ckizf/R+BqHX37HoZZIex297s8s0zJfm/4VSDcj5ji6nTSorK1etWvX48eOBmLeJaWpqSk5ODgwMHHI3X/a8ZeH81qAA0vw6PVVFxvAF09NYX6zAvf16yxcm+toOYfwdpqmpafv27WlpacPsPsXbt29v3bpVKBQa48jst2yW9jr1HfMAjAdI8+t8TX/tLxnD974oxX7/vNrXy2DktkdZWZm/v//Tp08HaoY/FAzDHD9+PDAw8MaNGwM852+cxnA6uutsuv+M2oB8LtA3QJoDAdP+Xx/rqoE0GQ2DmfYWTh+n7zxaFwUb7mMD8OOXuudgxsbGfv+sfny2bdt24MCB5uZm03w8o8UM3a25q/thyb5WDqbTS5DnwAPSHBBo3FE9v/A7vQzGGoO9gsFYLUiO3L3vYEvnkXqYrj8jDCC3b9+2srJ69eqVsT7A1OiO2Boet33z5o2Xl1dBQYGRPrBta9EYM5jRaA23nqZ1z9aNCfzj2rZRewd+C9pkgDT7CqOrpr1W5LahX6rp6ob3T1Z5etz9UKvVj60WJ4aH7A1r6j6rnssweA0HuVy+Y8cODofzE16Xo9FoLly4sGLFCsOnJn8fnbZp2494qKRXTv2+cZey44Ob9m1dHyM4q+1pqr4DzUujAtLsFzTGtL5tYlCjGUy3d4qZTqfA6fa/aIwxVte+vu04eQz15oOm3bK0msa0BmPM0BjT7d0wumMODNP1sFbXjxvYnYRhmMuXL2/YsOHmzZuGbw7ohwwBWlpaIiIiwsPDm5qavj52rxgeKunYagzGmJZfOyu0m79S0VFRNAyjUem/HbW0viIY/NfWp+ls056rJWAkQJp9hWE0b25VBPl7W1uaWVjabtkT8aq+lcYYY62y5U1m3MFpNpZmZuau837PK5YyGGNGea+mdJ3vssmTJ061d4pKz3r/4ZWb9d8tJ42bbOtsZeewJSxFixlW2I4Nm3c2Yfz+yQ2niSMvVVSsWLpwirnF5n1xLbLWskunPVynm1tPSxefbtJoaYwxpml1Y2nRca85blMmm3st86+8/VjJdFHqtwuusbHx8OHD0dHRhqeSf0JjtvPq1auZM2deuHBBqVR+fewuMAavtM2VJWeXes2ZPHmS/cz5WScvPb991dF83FgzW2s7e3Pb2UfPXcHa5qDVS/em59CM+sJxtuuipVTVlTmu9mZWU+OJnBaV6ow43d7WarqT2/FL1Zo2jSpaP58SpblOnzrZzGLNpp23Xr7/6boGgwtIs+9ozx4RIUmllmFaGz+s9/Ge7enbqMU0Vp/hhJvZub6pbcGYfvz0xZGTRZhR3bqeP3mKxcGEdA3Grc11bF6WktbUvr7lMGXsH68/aDDWYIyxmntwy/rNIXUYf3hCuYwfYeHi9eDpi3cv7kwzn7h5R8jK9UG1TU2oothq8oRLfzzUYgZjeVF2+hRLO+mtx5jRFpzINps0WfL0dS+nkvrX7Lh165aFhcW32GG4c/36dQcHhw8fPvRjmo6TNzRm5CV5nIlmNlmnL2gx8+79x4RkNqNpvnZWPG3+ciXGWoy1GGNN3dbVi0MyjmsZ1eWjqZOmWDvOW/65seVG+XlbszEBwft3HIxXKGVH2HGWUz0+KrAGY0zXR+zd7uK+6G1tM6YVieEh02csaqAxeNN4gDT7hq7rw6gwo8JYi7GyufbVNCs79PKDhlEl7V7lu2lvM2OgKFq2w9dj095EuX630TKYYTBd9/qOy6TR5OsPGv1MFbx2aT6mnCaMvfjHAzXGmJGdZB0Yb2n3+GMTjTGjqvOePS1CVKjFmpa6+9OtrKS3nqgxxphhNE0BK71DiTOa/rQHe3vQOp/PVygU37emhicMwzQ0NKSmpvr5+Rn+2FHf0MibHtmZWfHyLsg6tT5VpWcFU+f7dFz1qv7cLs3io+mWDvM+KDRajLH2Xdj2NU7zVtZqaRprtLLX7tPsz1beVmD8+UnlDDvz57VyDcYMo9Yqa5fM9cy9jBRwZNNogDT7CIMZ+cOa8hXLvG2m2bvOnDlnhr3NxHEl955qsOY+ed5iyqTlPn6RMXGlkhsKjDHdsnKmBSvvfOcbTdR6ab7pkCbXQJqOE8f+8b5WgzHGWnSBZTvDs043vaZpy0rPHSk5Gkb14m7xpEk2to5uDs5Ozs7OM5zsLc3N/XfHqg1K2l+uXr26bt2627dvf/Pa+Xm4d+9eUFCQWCzuhzoZ9Yen18dNcql58rZTA5BWXetdmhePZUxbtEY/iH6XFhXqvXZfC4MZrMXqOt/ZjryCchnGZac4dhNH2bh4OTk5OTk5uDjZW0+ZGEEchc6C8QBp9hGNsuWFo41NQga/RcMwWNta/9rZ0qzkzhMNZjAtb6l/dzRHsGPbpmn2zgdiMtS0csVMC9bxC52lqeouTY5B99xx4pgbH+t00qQusqfN8qrX7WTqxq0+87alZGsY1fPbF83Npz1+X9feH6cxVnacOOqfNOvq6g4fPnzo0KH+t55+ao4ePbpp06Y//vijT2PrpenaTZqKa2f5X5Lm0rX6Zj/9LjXm4LJ1B+Vt0vRzt+eeq5BhfO0E28NxWltt0J8L0vWGACMB0uwbjLrunWSCmaPk8UsVxhi3Pv/jis2kKSV3n2owg+m27i5TV5afM91hzkelaovP7KD9KYqu3fN7LpNHSF990GDdNcsKbi/SRBdZ09wWdJZmlgZrmj/dmTrFQnjmSltHT9t2mhX39wjm7du358yZ8/LlywFYPz8fWq02JCTk0KFDfTi3rpE1PrSdYiU+XSIzvN+HUZWd49vN00uTYegvSDMl+kBnaTropPn+Xqmt+fhL1Iu2r2caMwx8ARoVkGYfYDDGGmXLEwdrq6A9ES1q5sld5Go9euIUs8t3n2pobUJYaGVltYamVbKPwZvWuc1Z3qil0bVTk82tY9J4GoxlLQ2CrGMKGrfUvnQz/+1sxa0eTwR1amleIKa5LdRLU9O01ddzW0qWBjOYkZ3lJ02ymJZ96oKGxq3N9elpSVerb9H9OcGtVqt9fHxEItGQe1DFDwXDMJ8/f3Z0dMzPz//iiDRmZIXi1ClWdkcLrjAM8/HD59RMEU2r71afM7dzfdcg058IUtcaSnP6ki7SDGvt1tLE2trwkE02DrOv33hAM/jjuzeH9oe/rm2ElqbxAGn2BVrXKnx+41rA3JkWk6bMX7a6qrxywZRRklsPaEZ95RgvwGOG/cRxNlY2QbsjXryvZdQqrGlFFUW+3l7Tx451sZl2OJEvYzCjbr7CjXGztTKzsNkcmsSoNaLQoM2BOxox/vSoxn30iMfvP9MYY0Z7v5CY5TynVffjEaqmvd4eoQlcGmPM0LTsU+XpnGWe7lMmT55uM3XP5pBXb2sN7mr/SjvjypUrPj4+9+/fN+Ya+4mgafr8+fO+vr53797tdSSGxoraayfEi9zdJk+a4uw8J1dcxGi1WsXnzOgDzuPH2UxyzDt9GWubd/gsjk4UMRrlhWOE02JfrQZjjQZrPyZHH1q9do9WrcVaNVY3+Lg7HT91SavFmNbImz+d5SUvnm5rPXGCg5Pb/og0uULzE18kZnRAmn2DwVitup6WUp6agmWtjFqj+lxblZDw6fY9rFJhpaIiJbUsLQ3LZLRao/z4uTIxsfbObayUtw1KxzI5rdbI372tSoyru3cXq5S0Sl2RklaWloxlMq1aI3vzqiohof7hY6xSYZWyIiW+LC0TyxRYrWl99bIqMb7h8VOsUmOlsiI5qSw9FctasVrT8uJlVVJy07Pn2PCgZC83JslksgMHDiQnJ1f3L0cAAB3OSURBVA+VB60PIRobGyMiIvbt21dXV2f4PoNpzGCsVlekJJelpuJWGVZrFB8+VSWl1t69g1UKrFRUpCS3bWuV/O2bqqTUuvt3sVJOq1QVKWllaWlY1oTVStnr91VJiQ0PH2ClAivlFanpZWkZWNaK1aqWl8+rEhMaHz/CKjWjVl/NzcVq2MTGAqTZBxiMtdqbecfohgbc1FiWnPTqXMGJrVuwTHYtPf1lQdEdsRi3tOCmporU1FfnCk7t2I5lsivJKS8LC2+JhLilBTc1Xk9Pf1VQcHZXCJbJLicmviwsuCng45YW3NhYmZnxqqDg3N49WCYrjo17WVh4g8fTDapmsV6dKyjcH4plsgtR0S8LCmu4HN0gCUG8OldwPuwglslOxsQaSLOHi9tpmpZIJO7u7k+ePBnklfdT8enTp8WLF587d073A3P6zaDV3jiS01ZD0l+dKzgdHIxlspKk5JeFhbcEAn0NSUt/da7g7O5dWCa7FB//srDwBp+r29ZVmZmvCgoK9u3FMtnFmNiXhYV/cAl9DWGzX54rKDywH8tkRVFRLwsLKQ4Hy+W6m4qguWkMQJp9g2GwUom1NNZqsVKBZXKsUmGGxmoNlsuxXNE2SGkwSK0fRGv0g+Ttg1RYIcMKGdbSWKvBSgWWt3adSj9IieVyrO5pkMLgszSaL+wgGo1m586d8fHxP/ONPYNJSUmJnZ1dQ0ND2+lBw8rTWw3RdB2kqyG0BmtprFB1nUoh76gh3WeohVNBRgSkOQgMqqq6mLG6unrZsmXPnj0bzDIATU1NaWlpAevWDbMHNgMYpDmMaWlp2bhxI4vFkslkpi7LT8qdO3e2bdsmFApNXRBgIAFpDk+uXr26du3a4fqg9aFFXl6e7kp4ODwyPABpDjdaWlpCQ0MPHz5s6oIAHahUqk2bNkVHRzc2Npq6LMD3AtIcVjx+/NjCwuLNmzemLgjQA42NjbNmzTp9+rTuT2h4DlFAmsMEuVy+detWgUCgu9gF+DFRq9UXL15csGABnJobuoA0hwOXLl3q8kuK0Ir5kZHJZGFhYWFhYZ8/fzZ1WYB+A9Ic2jQ2NkZGRsbExMBNPkOOJ0+erFq16ty5c/CIqaEFSHOowjDMzZs3LS0t4UrAIU1ZWdnEiRPfvXsHnYOhAkhzCNDj7rRmzRoulws/TTEMaGlpSUhICAwMhIdODQlAmkOP0tJSeND68EN3JTyfz4cm5w8OSHMoUVdXFxkZGRER8RP+FvnPAMMwx48f37RpU01NjanLAvQKSHPIUFNTs3DhwhcvXpi6IIDRCQoKioqKqq+vN3VBgB4AaQ4BNBrNypUreTwenGYdrui65IYd88+fP7u5uV26dMl0hQJ6BqT5o1NaWrp06dJHjx7Boa6fDbVaffXq1blz58Jj9n8oQJo/LjKZLDQ0NDU1Fa7B/JlpaWmJjo4+cOBAH37BDRgMQJo/IjRNV1ZWLlq06MGDB6YuC/BD8Pjx4yVLlrQ/Ex4wISDNHw6FQrFv376YmBjojwNdKCsrc3d3f/nyJdQNE2ISacKPl3TQpfZLJBIvL6/h9Jgi2NIDCMMwuivh/f39TV2WH5Se5DLAp09N19KEnakzcrk8ICCAw+EM/Qetw6Y1Ovfu3QsKChKLxXBBRR8Y4AoJ3fMfgitXrgQEBDx69MjUBRkQQJqDAcMwR48eDQoKoijK1GX5uRhUacLO1J3GxsZDhw5FRESYuiADBtPpP8C4aLXa4ODgqKiohoYGU5flh8NIdRBamqbk1atXkydP/vDhg6kLMjCAJ01FQ0PDmDFjLl++bOqCmB7DY5pDW5rdS69bNrpv0Q67QXK5cuPmrSJxjlyp7HFVmLyE3zaI+bFP87UXTNut2D/OOvy2QRqGuXTl6hLv3+89eMT0tH+ZvISDM2gQ6p5pWpoMxllHTvhv2eu37dDq7WF+2/X/tsfwTaMNCvvqID/jDPLbHmY7y3v2snV+2w75bQvz337Ib5tuUNhgFqOPg/q+kvUz2XYgYNP2H9mbN+/eX+yz0W/7QX2xt5mmGgzYIH0tCvfbFrZs/Z7xdrN17+iWywjV4NtryCAMWuq78dade0atQqaRJo3x+uDDwvL3AlLOR4qfLqRC0PZagBR80tTlGbjwkEJEtiwLPPDD3sPEYHzs3MWAw1lCUsZHCj6p5JNKk6+3gctwWpZvybb43Lz8IqNWoUHvnjMYY0xjHBASw71eS1AMm8KQ4RQuUi7ZFKbVb+cfrsXJYHz0XLFf1DEu0rKR6VfXgISo6fn1T5hNCSeO5Z83ahUyWUszICQKpDksw0XqNmn+iOik6a+TpqnXFWTAsznh+PCV5i6Q5vAMF2mGgDQPgzSHZ0CakKEXkCbEhAFpQoZeQJoQEwakCRl6AWlCTBiQJmToBaQJMWFAmpChF5AmxIQBaUKGXkCaEBMGpAkZegFpQkwYkCZk6AWkCTFhQJqQoReQJsSEAWlChl5AmhATBqQJGXoBaUJMGJAmZOgFpAkxYUCakKEXkCbEhAFpQoZeQJoQEwakCRl6AWlCTBiQJmToBaQJMWFAmkYJ0fEjBwybwm2/eUC3j8AyeMHq2zz7OFof59DL3GiD0v64AWn2ml62XQ+b+0tbmWZTmEB0D3P4Yt3oSxXtcRyiD1Wuh3FQPyYfwIA0BzMMu6tPeyxbb+9/4yf2kG6VrK1UffjcH0CpIM2vb+IBmGdPc/7a1ifQN5fnGyccZGOyQZqDn69JcwCN2Xt+APF9T0CanSvM10f7mln6WOW+Ptq3SvM7qj1Ic6D4YaX5tc38hdIyfR6z0wcNaPd/UJz+tYA0ByQGW7zbZu1WRVmdRvtSHehJ0L2Oz/raCF2Hdpm5Kb7+QZpDIATSVUSa3ekYaE+HnHoObVjtCEorIBVfqG1dKz3qMisTdIi6BKT5rWG4SM1Dym88Pt6x3en2qtJRGXqpFbqq25dDoroS9iRQ+mtTDWpAmkaIrn3X1k8hapi2rU7zkYKDaBZiDIbqp+pcj/vW52qbYfvn6muwQdVkUZiHlFykaes30XxJo+vyHduy77F7+fVqFonZFO4ytL14hH7pTNnHB2n2sNU6Xmv4SCaWNoulzWKyWUy2iKUtImmLSNrCR8rw3Gq7pTuTqzXdJ/+ySfviWQ5iOlXIHufTVvlZ3Tryhu8YfjF3H5OoGYDzot8ckKYR0+l7mMI8pDwsvmiz8jBLou4YzVA9nTT0lY4wCzF8pDzIOzfNL77Xaoowm2KOVL6Ytjx0/4mnbAqzKZovqXXwXLVZeIuFuta8rif9+5DuFXoQAtLsZVtjFoV5VPOmWMGYKdNGmtmPMrMbP8V6lJnDCHPHEWb2o2YFhfGvWs7ySa7SGE7VUwX4lsYdD6lij16xWBaeUaX8cjn7nh782K3eDnJAmgMf3RYlKC0XqXlIxUMqLtJwECNELZGsrJEua7jVrVykJRBDUDSXUnMoDRepeUhNUJiLNFxEt5/LJihN+47HoWgOpemYIcUIUfP+ZO642YECUsFF2vapDKsUh9KcrLgz1sl7b3YNF6k5iOFQ6iyymY0YNsIcpOFQWg7S8CndbLVsiuEi3aeoDVzMEJSWq/toUsWhaMKktRakqU9PAiIQzZG0sstrifJP/JLbU+2c/CLOscoa2eV1GZUyPqkUka0sChMUw6E0nLZaykVqAtGEvv+u4iJN+45DUAwHdVQ8g/e71nABao3l5/3q4MuuaGzr3Oiqk7qjRiGGTWEOpeVQGgJpDSseh9K2jaZtWzqGizoKyUNqzg/QVQdpGiUExWSRH7dHs6c4eIw0d5nksnJ9QnHciZKJlrajzaaPtpn1q/VSv7hLQkmt9Xyf1eGCjaHxY2zd7XySs0tu/5+pK2OLP7MQw6GUSQVopJV3YlkLQTEisj5CkD99rvdIM4dJrj5b065EH70w0dJ2tJn9aJtZv1r/viGtIrMGsw26WgRFi6Wvps6aO9bMdrSV6wib+RPn7uZUfbaZMX8jl8qkmNzyx/9yXLaPODN3ZcAIMyfXVftTr3xOPl46zX3xbxYuS3eLMqo1bAoTSMm79sQvJHyc7YxRVrOXBBOpZS0shNkUY5LjTSDNbtF/0bZ/X3IoTFBqUeXzqXYuvrFXdXolKE0Yv2iCw8KkKjWfVGyN5U3wDEzKPW/h5DHKxsP/8ElBVcOOWNaEqTMmOnnvEP6hm5WQbE46Ue62xH+kueMU1+XbWeUskmYjJov8tDOOa+44Z6SF80TnFWtjC+NPXRuvr+Fu/7JZsjKykIvkScfL3ZcFjLZyGmUza9GWzLQKeSbC2VXvJruvDEo+uWpb6GgrF+u566ILX/NK7s9ZsX6EhbOr76G0CiWbwlyk3JOeO9LNP06Ub+3iOcpqlvcubmaVmujlyNLgBKRplHAozWE2/zdbz8ijtwXlH5MKn/hEnxdLP0Wmccc4r+SWvuVWNnEkmpzqdy5zPUdZu8/dkp5+6WX4med5lyV/nbo0rvgTm8JcqjW9oGK8pVdiWQuXku+JT/+HxZx1cWd55R/izt5buPtIlvTT/vj0ibP8BRUfuJXNhFTTrdvC8JHs+FVyguOCfYIyXmU9p6pVKHnv6DJzIwdlUszxsttm011H2i/bK6oUlNyfOnOO45L1Ez22JBY8TD1RPNZuwerIc5k1TJb00zSPxU4+4RmXX3IvPZrm7j3t90MsqclqLUizLyEotbDyxdRprr6x11hIVy3Vh3knLabPTqxSC0nZnujk0RbO42ZvSrv4LCwzZ5Tl9HnrD3lsSuVefbpmV+ToaSsyqpTsGk1szvkR1h4BcQX88ncR4otjp872jb1MIDqak/WbzdxDOX/wr39IOf/MJ/q8WFobQ4hH2Huzr7zS1XA+qfANzw0VV/PK3mUU3XKYt3zK4rBMKXOk8vl0tzmj7bzWxuTzrzxe6LtugqPnrw6+e4WV7EKpmetih5VR6RTDI+WHUjmjzKb/y9Ev9fyztNPlE+3nOq06nG7Ss7sgTaOEgzQbQ4KdFm/mVmvZCHMQzUE0n5RHsLJGuAawq1W60XKq3znOXWQ5d0tmlZJNYQ7S5pVI/mqrlyavRpZeUDHe0jO5rJlX+mCsxYx1MfksxLAphoO0HKQVINmBJO7Y2Zs45Bd2TuZkxZ0xzr/vyr7DpjCb0ook75yc26RZfmvi9HmrI0+zKCxCTfuSUkeazzxw4gmbYkTUx98Ddszyi2BT6mjRWSunhfzSd9lk4xHppzOXy0dOX37ozGtT1VqQZl/SizRPWEyfnVCpFpKy3dGpY+y9M8pb2BQ+JnnqtcrffNbaTImWQ6mEZffNbWcF5z4QoU9zV2z03Z6QJW3JJhuPS17tOHDYfPFBLqnevG+f44L1vGotm9LXcB6piOUf+4eDf9p1eVsZtEIky5bWH5F+zpO8O5J/4S82y+OKa49UPp/qtsDZJ4ItpflInn787Ggzh62s6yyEBVTDgfTsCbZe8dUqHpKHpXJHWc9PLv7MprAAtUbxToyzmRV3pYVN6Y9OwMXtA4apu+c0q+D6OAdPu4Wblu/K2M2/zpZo+Uh+OLOrNKfNXbY09HjbEUZtTy1Nz5TSBk7BtV/NvCLPvDRsSwrJLtI0PHfU8aKzNGmR5J2Ts+tGDmIj5kT5rVEOS/ceuc+mMK+mOS7n1Hi7ZanX5SwKc2ta1u3c77I8hIsUKwK3jzT3GO3iM8rVZ5SLz0TnRf/b0nuH6Nbgr1hdQJp9q4Q9SDOae9Ji+uyEKjUfte6KSZ8wdxsX0WyKyUEvV2wJdfo9PLWGISitoPqtg/OsDWzyqOS53YzFo6YuHuHqO8rFd4zLylF280bPCeaQanZh9UQnr6legct3pe/mlrOrNXykl2Z6mzT5SBaVe3XaosB/Tls6xmWFheOsv1gsjMh/daTyucUs73XJV9kU5lEK9sWy0eZz44s/pddgglJEi/InW8+IqZTzkDwsjT/KZR2hP3fKEBfIMZbWEWc+f8etR98bkKaRwvBRK//a0y3RfPdVQWPsvWavS+JI5BGs7C7StJv3+/LIfF0hddL829SlsRc/sSnMo1rTz14bZ+mZWtpI5F/9dcqCw2dfGUqTj2T7k7lj3LtIs8vlx1+SZl7Zzd8cvUOPPyJqMI9qijlyeuw03/RKBYvC3JrWdTv3uywP5iKFd8BmR88N2dW1OdL6HGldjrROJFVwSYaowSY5ugTS7Et6lGYU76S5/eyEKrWQbA2JSR/nuY3QSZN6tXxrmNPK6LQazKZoQdV7R+eZGzOledXPbF0Xbj6cm0U25EjrcyR12dIGAakiEM1HMn7ps62xAo9VW8bZL5zhH8+plsfw8/7h4J/RJk1e6ZOx1na+oWJxZV2OtO5I0ZV/WC2NOPsqt/K5xWzvDRkVBIU5lJxVXDbCYmHS5bqMNmlOsnaNrpTzkPxgGn+U63pCojvdz3AuojGWVuGnP+mkaZJLhkGaRqisNZhFYS7S6E4CilADP//SGAv36OJPEewjI1zapcnopXk4n6AYFoU5lPbEtZpfpy6MPPOcXcOIUe2+xMxR5vOSS5t5V++MMpuxJeNqpv5gP62rtftT+Z275wZnZvRXZjB5FXfGOv++K0vXMOzonrMRk1d+SydNNtUuzdXpVQoWhbl/yHTSZFGqMFb2KEuPuEuf2G3O4pJaE17iDtLsUz2k1MLrPR/TTKhSC0mZgTRxNvlq+dYw5xXR6RRul+aGTKmY/DhryVp3/0iWXlI0F6k4pJZAmEdqOIjR1fDsC+VjLTwOn/8QIzj+T4fVGddlbAqzKZpVRI41tzpc8JFNMUKyJUV09G8WiyLPvDpS+cJi9rI2aSrYF8tHWCxKulyXWYM5NYpo4dmJbdIMS+ONslmUca2ZjTAPyeOzzo2zdo293NyxpIN+yTBI0xhhCKTx3kUEs0r4VY1Zla9X7Tg02mZJSnlr/JELI2wWpRe/FCAVFzE51e/10iR1tZw+Vv3Uym2pR0A073p9VG6JuZ3TGPN5ieUtXKp58/6I36Z6bWOXiqTN6cUvV0Vd5JGyaNHZUXZL2VfeCUgVFzHdr2hjU0ye5JmNx2rf/dlCUsEnVSLJeyfnmYEEYiPmePmtEQ49SDOjBnNrWtfv3O+yPDj1Dya76q2t61zrBcGJhc/F0uaE0zUOa5PSKhSm0gFIsy8hKK2o8uXUaa6+sVf10kSaw7xTnaQ5fzsX0WwK56DXOmlmULhDmiwJm9JEcPJGWbot3CngVzWKqj5vSy+Yv/sYF2lWhfJ3ZFzgVzZkVb1dvevwKNtFSWXNySdKfrNakFTwWEAqOZSWW/p4rKXNom2EoKo+Nq/M3M7+7/9/e2f/1MSZB/B/pleKc2OdHi9xRi0HHsLcHZW2o3BKvXOoRxE4rA6C8qYkvB5WkQB5f0FCEt5hIUkLwRDzAvssU9p42taZ1htR4QjIQV4ISfZ+CC8BCmdaZJPl+5nPMDBPloGwfDbP8uwS8VFF17/lhs3RfNsXTYLkjTsqJT2HDsdXmewCZGfW8w5ExBz64Eqj9iVHRRxOTD16+no9vr5mA85p7hrURpOHXMX18riTZw5Ex73DSPj9X/Jutj/hIo/Q/PJcbvGBqOO/YZxOr/lKMmo9nJyeVoFxV05pe/mEs0amifnzqbDIEzGpuUyROpxx6ouRBQ7haR6bvlTNZZz4MCwy9mBs2vlKDQctC4zP03IKwyPj3mKkZN7VNxKbr+ThEKSQmL9e3xoVmxQWnfReUj7fNHUk/mQWn2givK36x2/Fnitq+55DkHxisUKueuf9C2yTs4kgeeP29KvlsZ8U1o2TfMLFVn97Jqf44JHEsKi4iPizKYWyJrObsxs3rPsFQjT/ryLcLTcuyPRPo99POl9zv8XkajEvifClMiEWdewDoc4hG13Iq+b9NjlPbrK1mJ0yfDL186qEtKoWo10y5hSZpo7Gn7x6Vyc1L98bnWOK+v/00SfR70a/GxEbc+rSZS5SmBZr6poTk1MPMI4fjIxLSs6slFl4yC02v/hHzrXo3x0Lj/r4HAtrHptvEnTExSeFRcYdS868fUccHpla1f30nvEZIzGt4M6gZMzFJ5yNGvOh9z7kql/wkJc77qwRYYcjjtfpbULcXnaXz4g9VVbZwIj5Yzgj4eO/V0qHZsVjLgpXCkM0d9mVBZLIK8CdImQXIbsQdwiQi4tI3xJxIXKIcIcQd/GQl4c8ArS0ckp7dWk6Hy2tbrXERy4h7uKsnvEUIIcI2UTILsCXeMjb5PuEuFOEO4Romeu3rH3j4dcjQEsi3CHCnQLk5iK3CNk5hJeDSAFy8YnllXvWER4+sSRcn+l7hMgpQMuNBOlbeCzEl0T4yhfmW/dO1XI5iObOCnE3pnnWUyJWtX/TZbAqjXb5jVYpU4GNzMrN/9UMPOkulqo6HnYY59qMC4obLVKmYkA/LTcvqPp/7C6Rqroet5kWug1WZWmLhKnsH7HKzQtf9j1SFTYOdU10GF+1GRcVN+61MJu/1D1vM81pev+FFfE1Pd8rTLZ243xXiaC1TKrSTbeaHFjvD1gRV9v7TafB2mWY6ywVNjPlmH5Obl4c6H7YUyzWYE8UJluncbazVCxhKXv18y1m+0CXpb+Ipxn4qdMwW1fbcDEi4V6ZRD3yQmma7+/4trtYolY/FY5RdkCCaO6+a8FavcTQyyE8a5cbrrwz7v+ADVtt9jVO2XARySVILuHmEcu+1UhrcgkvF213sWYA69Jf+4YLeyFEc2cx1dPyv7HUuplbefyvG1TDrBatdko/NKkoElvYWEV6pUpnrb3C/bpBNVQm0Q6/1A9OthVLLWys6kK1WmetudQ40aD66qZUq32pH5zsKG22sLHqjJqBEWt1DnuiQaUplQwNTxmGJrtutFjY2D8vfqHSWSuy6iYaVKoSgVY79WDwec9NmYWN1WbXqXTW8szbEw2q/iLh0PDUg8FnfcxWC7v/Vi5brZthZtyaaBjouy4cGp4yDD7vL1dY2NjtzxvVupmbF2os7J6+zMsnjpw1aH5SVSgtbOzOFY76/kxOZr0QX17dLff68gqIZii7KWGDlsSzn8anZMSnZJxIyYhPyfhDysWj52vZGy4Epv4qtF8vRHNn75mcHQ8WBcijMNl6hmd678+Ix9zS0aXOkVd9w9MdhkX+NkPthkUBvjZkFY+5paPOzpFX2PB0u28ro613dah51Lm21ZYhl2+ozWBbH9L5b/Uf35ByZWh2ZSvdnG8rAfIojTZM+6KmRvp2Qq7UYOvUzWHD00qjTYDczaNOCn+vIZr0kWe0MlsNTJmJ1WpmykxMmblMNloof9y009L3kBSiuU/kIo8IOXirZ5CCRIgmGHpCNPeJ1N7NaDshmnSR0lsY7LEQzX0iRHNP2XfR3OLmv//QSIgmSKEQzVD2525YsHXVUXAern+NEM19ov8fx4NnN4Zo0kBP8OxPeyNEk86iDfdmD8J9G6JJS/3WFdFxhg7RpLFNQbYoeKsQzVDWb5n6lgOyZ+MDaCVEE6RQiCYYekI0QQqFaIKhJ0QTpFCIJhh6QjRBCoVogqEnRBOkUIgmGHpCNEEKhWiCoSdEE6RQiCYYekI0QQqFaIKhJ0QTpFCIJhh6QjRBCqVPNL0bP/SQ5Gf5EE16uiWaXpL07M1u9jp4SVIB0aSv20RzN/fAvXul6d9ND0lm+KKJIJo0EpEcguSj5dPB+0rTsyGaNL2SdT9Lq2j6sz49h2jSzuCennthek5vt4mm92f2hV8KddHMr4LpOS0N7mjCOU2aS59zmiuhX829hyQz8qshmrR0PZq7eXTfNTZFc9t/zgyGprSL5iowPaexfOSCV5ogVdIomhvxkGRmPkv8YFKM20XIAdJJCb5wJrskSKPpJb1eUtGr+ay8WYIviJBNjNvFOPVPGrhbXq6VKXsHSJL0et/UTIeaaJIkqezszrlamlPAzL7Gyr7GyrrGyvYza8tb2g9tfcAOQ8H5Lfg+zClgZuXmBeXUfIVH3/1wNj07p4CVXVCeXVAeVM8hbXYDqob++mnWw0eP3+j+Q1k0SZL0grSTXH0b5FD+RIFvSL+f8JtaHUxlNAEAAEIOiCYAAEAAQDQBAAACAKIJAAAQABBNAACAAIBoAgAABABEEwAAIAAgmgAAAAEA0QQAAAgAiCYAAEAAQDQBAAACAKIJAAAQABBNAACAAIBoAgAABABEEwAAIAAgmgAAAAHwP3spzDo3qsr1AAAAAElFTkSuQmCC" alt="" width="328" height="344" />
- #_*_coding:utf-8_*_
- import time
- # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了time.process_time()测量处理器运算时间,不包括sleep时间,不稳定,mac上测不出来
- # print(time.altzone) #返回与utc时间的时间差,以秒计算\
- # print(time.asctime()) #返回时间格式"Fri Aug 19 11:14:16 2016",
- # print(time.localtime()) #返回本地时间 的struct time对象格式
- # print(time.gmtime(time.time()-800000)) #返回utc时间的struc时间对象格式 当你没插入值的时候,,默认传入你当前时间,返回标准时间第一时区
- # print(time.asctime(time.localtime())) #返回时间格式"Fri Aug 19 11:14:16 2016",
- #print(time.ctime()) #返回Fri Aug 19 12:38:29 2016 格式, 同上
- # 日期字符串 转成 时间戳
- # string_2_struct = time.strptime("2016/05/22","%Y/%m/%d") #将 日期字符串 转成 struct时间对象格式
- # print(string_2_struct)
- # struct_2_stamp = time.mktime(string_2_struct) #将struct时间对象转成时间戳
- # print(struct_2_stamp)
- #将时间戳转为字符串格式
- # print(time.gmtime(time.time()-86640)) #将utc时间戳转换成struct_time格式
- # print(time.strftime("%Y-%m-%d %H:%M:%S",time.gmtime()) ) #将utc struct_time格式转成指定的字符串格式
- #时间加减
- import datetime
- # print(datetime.datetime.now()) #返回 2016-08-19 12:47:03.941925
- #print(datetime.date.fromtimestamp(time.time()) ) # 时间戳直接转成日期格式 2016-08-19
- # print(datetime.datetime.now() ) 获取当前时间
- # print(datetime.datetime.now() + datetime.timedelta(3)) #当前时间+3天
- # print(datetime.datetime.now() + datetime.timedelta(-3)) #当前时间-3天
- # print(datetime.datetime.now() + datetime.timedelta(hours=3)) #当前时间+3小时
- # print(datetime.datetime.now() + datetime.timedelta(minutes=30)) #当前时间+30分
- # c_time = datetime.datetime.now()
- # print(c_time.replace(minute=3,hour=2)) #时间替换
- ####################格式参照####################
- %a 本地(locale)简化星期名称
- %A 本地完整星期名称
- %b 本地简化月份名称
- %B 本地完整月份名称
- %c 本地相应的日期和时间表示
- %d 一个月中的第几天(01 - 31)
- %H 一天中的第几个小时(24小时制,00 - 23)
- %I 第几个小时(12小时制,01 - 12)
- %j 一年中的第几天(001 - 366)
- %m 月份(01 - 12)
- %M 分钟数(00 - 59)
- %p 本地am或者pm的相应符 一
- %S 秒(01 - 61) 二
- %U 一年中的星期数。(00 - 53星期天是一个星期的开始。)第一个星期天之前的所有天数都放在第0周。 三
- %w 一个星期中的第几天(0 - 6,0是星期天) 三
- %W 和%U基本相同,不同的是%W以星期一为一个星期的开始。
- %x 本地相应日期
- %X 本地相应时间
- %y 去掉世纪的年份(00 - 99)
- %Y 完整的年份
- %Z 时区的名字(如果不存在为空字符)
- %% ‘%’字符
##执行结果:
- 3.9473128470428115e-07
- -32400
- Tue Aug 23 15:21:55 2016
- time.struct_time(tm_year=2016, tm_mon=8, tm_mday=23, tm_hour=15, tm_min=21, tm_sec=55, tm_wday=1, tm_yday=236, tm_isdst=0)
- time.struct_time(tm_year=2016, tm_mon=8, tm_mday=14, tm_hour=1, tm_min=8, tm_sec=35, tm_wday=6, tm_yday=227, tm_isdst=0)
- Tue Aug 23 15:21:55 2016
- Tue Aug 23 15:21:55 2016
- time.struct_time(tm_year=2016, tm_mon=5, tm_mday=22, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=6, tm_yday=143, tm_isdst=-1)
- 1463846400.0
- time.struct_time(tm_year=2016, tm_mon=8, tm_mday=22, tm_hour=7, tm_min=17, tm_sec=55, tm_wday=0, tm_yday=235, tm_isdst=0)
- 2016-08-23 07:21:55
- 2016-08-23 15:21:55.438771
- 2016-08-23
- 2016-08-23 15:21:55.438771
- 2016-08-26 15:21:55.438771
- 2016-08-20 15:21:55.438771
- 2016-08-23 18:21:55.438771
- 2016-08-23 15:51:55.438771
- 2016-08-23 02:03:55.438771
执行结果:一一对应
b、random模块
- #!/usr/bin/env python
- #_*_encoding: utf-8_*_
- import random
- print (random.random()) #0.6445010863311293
- #random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0
- print (random.randint(1,7)) #
- #random.randint()的函数原型为:random.randint(a, b),用于生成一个指定范围内的整数。
- # 其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b
- print (random.randrange(1,10)) #
- #random.randrange的函数原型为:random.randrange([start], stop[, step]),
- # 从指定范围内,按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),
- # 结果相当于从[10, 12, 14, 16, ... 96, 98]序列中获取一个随机数。
- # random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。
- print(random.choice('liukuni')) #i
- #random.choice从序列中获取一个随机元素。
- # 其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。
- # 这里要说明一下:sequence在python不是一种特定的类型,而是泛指一系列的类型。
- # list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章。
- # 下面是使用choice的一些例子:
- print(random.choice("学习Python"))#学
- print(random.choice(["JGood","is","a","handsome","boy"])) #List
- print(random.choice(("Tuple","List","Dict"))) #List
- print(random.sample([1,2,3,4,5],3)) #[1, 2, 5]
- #random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。
实际应用
- #!/usr/bin/env python
- # encoding: utf-8
- import random
- import string
- #随机整数:
- print( random.randint(0,99)) #
- #随机选取0到100间的偶数:
- print(random.randrange(0, 101, 2)) #
- #随机浮点数:
- print( random.random()) #0.2746445568079129
- print(random.uniform(1, 10)) #9.887001463194844
- #随机字符:
- print(random.choice('abcdefg&#%^*f')) #f
- #多个字符中选取特定数量的字符:
- print(random.sample('abcdefghij',3)) #['f', 'h', 'd']
- #随机选取字符串:
- print( random.choice ( ['apple', 'pear', 'peach', 'orange', 'lemon'] )) #apple
- #洗牌#
- items = [1,2,3,4,5,6,7]
- print(items) #[1, 2, 3, 4, 5, 6, 7]
- random.shuffle(items)
- print(items) #[1, 4, 7, 2, 5, 3, 6]
生产随机验证码
- import random
- checkcode = ''
- for i in range(4):
- current = random.randrange(0,4)
- if current != i:
- temp = chr(random.randint(65,90))
- else:
- temp = random.randint(0,9)
- checkcode += str(temp)
- print (checkcode)
c、os模块
提供对操作系统进行调用的接口
- os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
- os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd
- os.curdir 返回当前目录: ('.')
- os.pardir 获取当前目录的父目录字符串名:('..')
- os.makedirs('dirname1/dirname2') 可生成多层递归目录
- os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
- os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname
- os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
- os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
- os.remove() 删除一个文件
- os.rename("oldname","newname") 重命名文件/目录
- os.stat('path/filename') 获取文件/目录信息
- os.sep 输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
- os.linesep 输出当前平台使用的行终止符,win下为"\r\n",Linux下为"\n"
- os.pathsep 输出用于分割文件路径的字符串
- os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
- os.system("bash command") 运行shell命令,直接显示
- os.environ 获取系统环境变量
- os.path.abspath(path) 返回path规范化的绝对路径
- os.path.split(path) 将path分割成目录和文件名二元组返回
- os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素
- os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。即os.path.split(path)的第二个元素
- os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False
- os.path.isabs(path) 如果path是绝对路径,返回True
- os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False
- os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False
- os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
- os.path.getatime(path) 返回path所指向的文件或者目录的最后存取时间
- os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间
d、sys模块
- sys.argv 命令行参数List,第一个元素是程序本身路径,读取参数
- sys.exit(n) 退出程序,正常退出时exit(0)
- sys.version 获取Python解释程序的版本信息
- sys.maxint 最大的Int值
- sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
- sys.platform 返回操作系统平台名称
- sys.stdout.write('please:')
- val = sys.stdin.readline()[:-1]
e、shutil
高级的 文件、文件夹、压缩包 处理模块
1、shutil.copyfileobj(fsrc, fdst[, length])
将文件内容拷贝到另一个文件中,可以部分内容
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAn8AAAELCAIAAAAnd3fmAAAgAElEQVR4nOzdd3wT9f8H8FMZIkNAkIqguBAVRRQRUEQQQUHKUFAE8Yfjq+w9BKWXpOnee++9d+nek+69m7Zp06TZe9/vj3SkbVoKLQHl/Xzcg8c1+eRyCbl73edzn/scggEAAABAu5CHvQIAAADAYwfSFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0fbh4jamZOdkV1Ie9HvegLdnUMSKtkSp+2CsCAAD/XhNNXyGDnWQZdvhw2O/nUiMbH+gqPSYoJcE2fx0+sP2jH69ZJrQ85JVhlYeaXP/9gkNidY9I0/PM0gDi1d8OHz58+PDhnete/OSsc24rX9srCQAA/x0TTF9pb33VieV6CILOfMFW14X2YFfqscAlV+Z5Xty3ccVHPxMfdvqyCqx/+uSlmXM3nvPM79QUv0JyRXpCWEBAQIDDpT3vLPvwV0hfAACYjAmmr4LR0nJrvR6CoHNfcvgz4r+34+XXp5bp/ZFmE0PhaPFdu9Msftm880GlL7sqq7C6sUt495KiOp8zX7w594VdeuHlNNm4Rbujrmx7ZyOkLwAATMpEW56lAlFzXk1QUE1kXEtt3wNdpYdBQI03CX1nicthkyZtnoKl5zr9uX3/g0rfphBLn5ikmokcToh6qrOTIuMLG3u544cvpC8AAEwF6HWFYRgmaGm2+c1hzn8rfTtj/rpkbBs7ofSdOEhfAACYAhNPXym9vdHsUNSZq1UNU/HGXDI1wjDmKqH+QQSPkNwTaxN36Ndkk9Bu1l1L06kJlhGrl+sjj3T6cmrziyur20ZmHqc6p6iqliQY8TC7KlLvyPuf/GYw0fRtT7NyCo2v6tbY6UoNpC8AAEyBu6SvkMFOMg85eDDk4MGg3V86vogYvbY2NXd4GSmLXeCZcPBgyIjp2Kk4vPsd48E/T6e65fMxTNxdXWt4MER3p+fqF0zXfpYYkF58Xu1Vf17L1pxFIm5dUuE59bc4lWaewlBfke6qBtuzIQcPhuzb6bHmJSKyyHEvrqGX0ZfpnTbwqqi/zKor2BiGYZiAdSc89/TBkIO7PT983RhBUORp45fe89gzsPwLRmW5XZP4aimlYbbXDw76U1/fxDEuM62JN1RkKH259UnOuP/1Fz1h5JczFG6c2nh7vd8P6n6ue94qqmzwYIJTHWvz9+8HdbfsuWAbV8nuf7Qz25l4/uDBg3s+e3fZwplzlq/+dMe+gTXQ885sVP++MIyUZo2eUT355brlm05YpTbysPFB+gIAwBS4S/rKhOKW/NqQkFpvp7xfP9ZDNKWvXCRuy7hzcZcZgqAIYrjszZAbtlnH1ulNm018/nXHj98K0XPKPfuV6fQ5Vtt+rWjG5FwqLc0x+/QOUwTRn7/Iau1HTmvWhBmG1Ib4FhH/9Hxjgdna71MME+nqb8Fu7w5GfT//wPLVla6/G9eGhFTY6EV9/obxsg8DLhMrSvsTScHtpRcl1oaEVFjeDN/8Aoosctx89LbxNa/1Wzy3/BB58hsbBCEs/ChU7zYLwzBMKuqu60wIqQ0JqXXExXz9Foo8a/Pp0VS3kNqQkNqQkNqkXErn/bba9paF2+qdvGhg7xGiYnPt5+82LX1l/yWT5I6hYqr03X/swtWb1y7+be0WEhISEuKOP3P025+uew4EsJjWVJzheGH3R5/tuxk8lL5iamNRusO5nR9+9i0aMZi+nI6S7NshISEhIeanv1jzwabD1829+1chJKOCRB/eBYvVVpiZEBISEuLy13cfvvLBT5C+AACgHRO+3reXFnTCTGP6YhgmovSGnrNGEMLiV3xuhdIoVGrMdQcEQecvdzrlQqPRqIl6bghi+OamhDg6hmGYoIPsfcIKQVBkodWa4/mp2X1MDMPkEnpFrdH39sgzRu9+l5TYOrDwXmqMQeBbS/Rfes8fH97VysIwTMGjMVIckg68h39Wx+03YlP7sNVRkHJKz2zQQ2YaLdAx/3ib50lnUnFpawTOTwdBn10b8Fc0c8T6d2bdObNZb8pannnNcUa3zp4xj2+jSwYe6qlNczjx9bfHL/uXDQUcPdfpz+3vrt71P7x78p0GSn/a9mXb/bZ7zxGDmPqhgKsLubBvz7D0xTAMw2oDTn3zjXr6Dqn2+W3nru8n2PJMib/1zdqNkL4AAKAlE01fMY0efcnmbulrtHJ9UpoQw5j0XDMfBCG8vDbEswnDGH2Zxt4IQnxtfVRoF4YNpa/RKx/HeTar1cfE7GL/uLUI+swb7r8GqKq/opaMguMr9Oe85PSzRZv6WBAiCjnwuvtSRP+VTyMdS4dV6rqLKq9s00MQdN5rLr/ZtJDYGCYTUxq6bofVxaZ31feO7Nc7xenLKPK6cPrPc14lXPVHJYyqYCcX9/CCodZfeq7Tn9u37LroVcSUqJVsCLvy7R7da/4lQ0cJkL4AAPBfMrXpa/LWxvQCbDB9ia+uiwzuGid9zdZ+mV08bEmyruLKc2v1kGesN/9a1oJhot6ekL89liD6r30a6VErHV6WXxGZ/s1SvRnLXH60aFePpYH0Nf1wb0biqKwdbYrTV9KZYn1m//oPfjEOLO5Rf5zRQ6FQGENBO0avK0hfAAD4j3vU0hejVTfhvtZDEPP13+SVYBijttlwnz6CGK7+IiG6Z8TbKroKKi58oofMsN72a2m92hP96TvPfveVatIEPt0Upy8mYXZUhesf3vv5qo07Dhw4cOCyZdCdkSuPYZC+AADwuHrU05da2aC3U2+M9MUoJTU3tushiOVn3xeWqz3en76qPs8T+HRTnb4YhmH83oaSjIgIH+PT36x9ffmqDV/u/w3nmto4rDEa0hcAAB5Pj1r6yjrvVJz9UA+Zbb35j/JWDGM3tlr9aDJG+krbsu/88b4eMtdux/mqdrUnHoX07SdhkirzEiMifIxOfbdz/ZfnHdQDDtIXAAAeT49a+grqU7L3z9VDljp+ZdImwjA5ozfe0O9FBL/0w0Dj7BFjSvArotK/maM3903PM75U9WEipiB9aZR4p6SzxNKczgl+Q0MopemZqbfrh9VyMQmDlOd5+dsjf/wTWj2YcFpO3/a0tNKGBsaoopC+AACgZQ83ffVf/TjMp2loOZyOTtdTts8j+ss/CrMuEWIYhskl3QUVl7ebTJ9n+83ZavWUYra02f5mvRgxeX9XWvzwrlWTT19aUfnVr+2++LWwgHuX147Wm+ONM0BtcrpHPC6pCfvrwqVzHkOdnieevuQkwyNfHDjjlE1WK8eu8rm4a9V7mtO3M/bv/ZsPXvUrogw80h7hGZmV36xpNCtIXwAA0KoHkr6SXmr0NYcJpC/69LOmHx9OccvnYxjG6ejxuey6agm66HXXi169gxcXyfmC8ois79fqL3zB5dit0mImhmEYq7XT7ZzLysXEVz4Is0xmDg8faXN64a/v3UP6ChsaTI/ZIDONNh7LTO7A+O0d7pe91n7qd8O/997DF2MUeV84vHHl15ecktQqwNyGFMs/j/2m51E4dHVRe4L+0fWfaUzfDVtO2mYMDbUlaY3GHdy+9iAupKq/cs6uivJwv3Lok/dXLX1z/eeXnRNrht/3UdwUcm3357vOuGR3CDAMw9rTXN1DEirIGoeShPQFAACtuttIk3RWglGArm7gNzu9179GRBDC7GdtPtUN1NUN+eV0XiYNwzBMymRn24Wte5WIIIQ5C1y+/S3b0Sb0w1eICIJ/Zr7N7p+SnW1vf/K2CYLgZy+w3XO6KI8+dL3vc885bNhi9OpHPrq6gTu3uq163vj1DyMdsrrahjewijm8hsT8G987zltsvX5HoK5u4I4tLm+stvvkZGFmAa1XrColJVfUW/wZoKvrt3WD/bLZKDLDUOdN1526gbq6Mf9YNreP9zkFpPSiE7tt5i6x+mBr4NdbnD/e5nvCobWl7+5XK40mrYvSO/XT5j1Hjh/f95XugK/2HT+D981s6O1Pre5CP9PfPnpj6bPzl7/18Q94j/QmHoZhnNp4u5vfrXv9hXkLXnp740nbyPL+owcJvTXT6dS3uzZv2q5a3rFLeI/UYPNLKOG6dWB0blX7iHGsMDGtKQx3aPf2j7d+raurq3sadUyuoQ6/hVFbsvnNP3R1dXV3fLxyybMLlq3euG2Xrq6u7j8+uS3DRiRhFHn9c+ZHXV1d3R3rX180d8FLaz79Ypeurq7uSbukeqr4Pr4kAAB4rN1tpEmRuL2kMSZm9NSUktlDFmIYhinE4p6atoHHW1JTu6urB/9sSk3tqK7uGvwzLYfSIxo67/vOhtu+ReqLbc0uZGi+L4JYRGnoHLYOqR0lJPWanILXxyxL07i2bQXlrLv0PhIKSNUdgy9Jyu1pva/oxTAME1Cb6utLKyrLClNihqQUVneoDarBp9SXZg0+V1TbxZJiGCZhtFfmJw88nFPRShs61y2ht5bnDT6Xeqehh8Mkt3R293CkGlYCwzCM21VRkN5fPq+2kzmy3svpKMtPixmtoL6HPSxSRb11BZm3NZRMr+xgCuT3+T0BAMBj6+HcYXCcK44AAACA/zztp6+4q7L61hfu779MRBDCs4vsPv0+5qpLO/3uLwQAAAD+I7SfvnIenVEc1xQ3OCW159dy73ZbWQAAAOC/4+G0PAMAAACPM0hfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2zekrk8l6e3tlMplSqRQKhWQyWTUvEAjIZLJcLh89393drZrn8/ljzff09KjmeTzeWPMUCkU1z+Vyx5rv7e1VzXM4nNHzCoVCfZ7NZlOp1PHnWSwWjUYba16hUGj5fwUAAMB/m+b0VSgUTCazu7uby+V2dXX19vaqz/f09KjPczgc9XkymUyhUNTnKRTKWPNsNnv0fG9v71jzLBZr9DyVSh1rXvUpenp6xpqn0WhjzTMYDNU8k8nU+C0BAAAA92fMlmeZTMZgMNrb27lcrkQiodPpI+Z5PN7oeRKJpJrv6+ubyHxHRwePxxOLxTQabcQ8n88fPd/Z2amap1Kp48+LRCIqldrV1aWa7+3tHTEvEAhGz5PJZNU8hUIZnBeJ4GpkAAAAU2m8875yuVwgECiVSgzDZDLZVM0LhcLR81KpdPx5pVI5wXmRSDR6XiKR3Pe8ak0AAACAqQK9rgAAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQAAALQN0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQAAALQN0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQAAALQN0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQOolefDvFbahJk3UWiTWhA3KT30ZGZtNUc67OHu4iN+Ibh6aq9s4ovixCT6bXaI9qVxeJqevpPrtyU4K5sjkmp6FgAAHlmQvv8yjEJPa0//xDru8If7YtKjvra1XWkTTKhpCCtKOORiu9LG43xxS5N4wovuLvrewxJB9ReauV4q72iX3Pc6ssNi3Fabm75kZbMrtbZmMIM7srbYm883s3zV2htfT5tQBnOqTjqaz0WJz1tanSzvo4xcpS4TF8vn9I1etLI+W8nsm0ACd1VGfepsv9LW9lItj3MPBwHja8M52L9la7vSJjFNTvcKsltla7vSxt+drlRO1TsA7eEUVab/YGOz0sb3z6zymMb8k+42K21cjySXFgke9qo9BL0BcSFbbW1X2oRbt7YGZ0XscrJdaeN1s4rcNbC5Vfv8dtk+tIIsfKjr+a8E6ftvwij0tLC388vr5IkV6o831aZ870icgaKInsuZxOjvAu2fxqEIit+WWF7AmfDS+9MX3RRdnNonld5/dCjyMr3XmKKIRbBVC42lGFhQR9YWe1MERbcl1d5hy2QTWH5prtdqE/yTKLoztaGMLVe9pLs6fodrfACd11Qd+YEZ8UkU/TqjuYorlw8skFwV87mL/fkqNmNUHktF3LaKiBeM9OeaWr0aW9srvnsC56U5r7G3ecMvv0YqV2gqkJNstRiPIiiK6IXGNMfrEHEIiiIo4VSjUmN58Cjr7iy/6m04C0UR1FY3MOpCgsccPIqguPeDksMn1yL0b1RbHr3TRn86iiJ6HrcyY3Z4WM3AoQiK/yajqYbfX0bE6k6x/O6UVUhlNwTwvYH0/ddgFHpePH32n4D87uHRi/FJ9lEeL+FRRM/064TbV0J939XHIyj6UURONEUsmngCDKTv9uSaEu7di4+jONv7fTMUsYryJrOGKgyMst+cLeegqG52R7Pq0e7CQ74ur1t7ERr6aBpykGzuYfM8DkU8U9OogsHo3WpvPB1nsNjCa6eL0VwiiqDoHBPLFdY2r9v0Ty+bEKfh0Dmmlmeq2MzRFWJpt7GnyVw8ihiYnq3hceWswAiX9+2GXj5iWmqIexJFEYLx7nyKQD7qkIFZst8Y/xSKIno21xrKL5gbPoWiCIoeKu7rvf/Gg381CZvaUxbPv3vBR5CYGpcd+g5BD0GN1gWEX02K2mpAQFB0pXeUU7uAJ3/Yq6dlvGb9QEcdPIromX+XkX7Zz/01Ah5B0c/iS9PpUonajkXMLvO5tOsfz+xm5sNb23+hiaevhNGearj79X7vfbrrWkzPGEU5HR2ZLi7lU7OGAMMwDGMUuZ25edM4uoo3MnvzC2O+tCA8pefwU2ZVSl3mETezGSj6UXj2vUUvhmGsmmu+9vPvIX0pPtGBmzUl1jJj4kw8iuANl1hYvTb4uJXps/r4J1F0trHFy6qwtDB+moBDUPx80zDXHtaI9+ypjd1gafAUiiJEk+VW1qqFrDA1eC/yThq57KyN5WI8+gRq9b+S8hseFs/hrf4obS+hMZoZ/ZN/lOU3mW09Gr4COac6cqmxPqJnfaOFz1PIOVxmK2PohcOnFpyzwdM4FPHNr+NKFCPDl+njbzYXhyJ6fk40Zlmh93N4HIKih4pGN5L/9wk7+7L+DPz79YBbn8b5BWn8AcmY1a3hX4WaHSyu6NX26k2AuL4h5//siNNRq23heTGtZX8H2TyNoiu9Ih0fXvS21Gef8LUe2risA29VdHRPYoF9rfl/BDgP22A9EjxJjFGHS7y0zOANpoSn9FxO32nMrL69y8FkGopujisZEb0YhmGYjF/jfu6rn/WDK6ACPHETS18Jg5RmsP+jT3+xy25paWlpqciOwX+zZM2X16JHBzCno9Tllw827zAumOp1fYwxitzP/P7nDd/8UWdL+2quBDk8jXP4KaumktFsE+35MsFsV2JxOvMeoxfDME7d3772z2lOX15qVvjXjtavedwO6BqszsrYPA6JyWwZNUUkub9tgiIWwaZ1pJrBx0l5RxzM56DoF0k1ad3q5auvONnvSapr4Kl/uC4bL7sleHRnakMOhRkcZ7fcEF0VcSeNTOsSSKXKNtTeYgGKfp3eVs+Xsmvj3jAzmm/qadTG4QzsJYUCdo9Qqrl9WyogsZgtTDZDprjbl0R3cDechUOR4Cq2dFTZttvLDfBP6Pk70Thcxp3vTPWf1LO93kh/PGu9SqlcQKHVhxRYvhLmqTF9RTxSULbeDOdzq2KC4h69yjGH5J7oORtntS08P5vRGZEd+q6+8UeByaHUhxW99ITsmO2mhrOdQv4ua29hdvklB35kRJhn7PPXfQYwNTQp7HMzo9mW/n+VNlUymS1MZsGd2K32ZovMLI7kNFWr92zsLf3Zy3oG6nLqTnMTox4f6KSDtziYUVXEHh29GIap8vfU9iP4oIpu0X192sfQhNKX31PrcX712iuRtP79I6ejxGb/nOWrj/t3DpThdJa7//Hqq6++umL50ueeWfL2J5C+U4ZR6HZm13e/m8Q2jKj3Yn0xKcEfWvmeL2ppE8tqq28fsLPYk1iSzZJINKVOfVXSUU/rV63HmCxNFxAJT6HoLCPTFy1HPGupY6g/A4cieINFLgn+6u3JmmhueWZVnHS2nKfe8txPxuJyegQS9aplab7PB6b4pwbanFvvBK0y059h4IpvZjLk2J1cz9XG+HciS0pYErkSw2SNF23M5qH4IyV06hQn3zjp24ZaGU+3TUjo4/KUWFai6VzU9noTizFlnbn+jcS9eWX2Y6WvUkrLr3F53e36+oyclkftnDinqPz2VxYuukmVtQJJe3vpBQ/zjYEp4TSRcCrXlJGSH7/HJZxQ3c2+a9GO4lPeFjNMPU8WtXZKFRjGy8gJ32yMInrOJ4paSPf81vys/Mht5vrTzfz+KieRBzoxyKXCqrK4rbaGswydzpSQ2vo3n17/KO83rYLQyo4uqbyiJPxzS8vvM2pKuLJxuoPI+OnEnZ+ctchogvbniZlI+vK7a9x/f/3NHzxbBx5RyMTs3vaOLtpQbUUhE7N7W1tb6woSbH5eCek7hVpibh7eu+eKV97obsJynoDXxeYxJXIFhknEAgqb3SvSHL0YhknE/B42s5WpYSq8E7vV1hBB0f7JOca+vktDyc6i/7nHWDdS+sZbYW5UnPubhhNP31G68nc6mk73So0ms8UKJYZhMlrh9zYms1D8D0VUckvuVnuTad7p6VT+QNVWxuSw25ntDqFua22ig1mCqWv9Gid9pXQWq40jVO2vhHxWG5PDftxODY40bvpiSrlYyu3iMrpFE+jupmUKkVjQzeJSRVI5hsmk4j4Oq5s/tdGLYcIO93jvl029z5d0MO5SVJBfGLPdDIc4Rpo10hUYhmEKoYjfzWK2Mjl9Yuk9f3/8ZpMQlxdw6IaYkkzmsP6Dcmb1VR+7BSj+3ciiTLrq5yzj8LkdbD5HJldgmFjE62azaeLxohfDMAwTZxt8sUH3UmA5VH8nZCLpyyVX2h9buuqYb8cECou6q4LProb0nTotUde/27P3sk9R34OrLvT6R3uvIqg666KvmJvPN3E9caddw0VHCgmDJ+BI5eOmDDssxm2lXbBZI4UmU6vPKiR0LofEYvWKxt+Mu+x9HF/wThuMXgzDMEXLLQfLTRF3ipktFh52i70zblMGT8Oyw2I81tlavWJlsZiIfwolLoqsaBOMd/lRZ3nE+qC8YoFkAlnZN17LMxhp/PR93LE6Sy74mE+bUPrys/Iit5igiHO0RdPdyk4EtwEf6LgYRbcmVhaOuA5C0eUY4vYKiq4MzU+lTfwKRQ3E2Qbb1u06F1BKhvidgEcyfYWdJYHXv1gxnve/OmaaRr3vd5gIcgEpI6a2aSoXKSwNqowIab6nVqOWqL++W/vJr2ZJrQ9s509ryTzkbDJtoOL7eVDQVlv7ZT7pMZT7OzmnEAh4ZK6AJx/VS6kfJy7Jf7Od1QrLcNce1shLorqyt9gE41qp9GGvlrG4HIpQKlNKWVxO+G239faWK6ysVlhZrbCyWETEq3oaI1ZRPrnByyyjfBl8teovKzjSdY2N1UB5q2XG+k8RjHS8sicQwOOe933IlFIOI+N4UePDXg81d0tfFrvFp9BBr42l+WkZvbQrl1g3kR3N3fGaM5zPbRl3N7Ju/2nHXPr9Lb6zreSqn/fJnIbWYQ8Ly6sz/8839J+KrpHtr4wm02i3ufo45KGkr4LsGuH5Goo+bRth29I3bOwaXgPO33Exin5+u7qYM7lr1MU5BtvWfX3OvwzidwLGTl8+tdHv5IoVK1aseGnZ0ufmPDV9zqJl/b/ZtzfsuBw1xmn/qUhfpUzMpZPbx9PR3csU3m8zH6UrGB+4YoWValq3P94xVy1muNREq+jNKyyX6bgduVxeSyZ53gwYKOz9P3xdi+aFsjIdbu9dYakqueFoakCJevMnM9Uy/psVFi885/47sa4ZYySbx+/uL+xyXL+6YsyzQIwcu1+3bthzze/OVGyCGvX6R3u/RcAh5uavGBgsQNHtt8utEwI/tjI8kNlYM4H87W1IO+RlP5htE5gsFhsQpuFQBNXfcLu2jje8FU0m6uEIOPL+/lDd1fHbXe1GLEHHkKCb2VJEZbWzhk8coVAi6OIIeAr16Fbw+JyOwTIVkS8Y6yMoiuBDArki1aF+XprLGlurPbnkURH7sNJXKRO0+6/w/2tFwF8rAm6+GeLko36UohAzW/1W+F9/KeDasuxqTC6itfj2Fw5E16XldmpapEzCyS+1GFjm32ujvEPGyEi+oNcvQ1XsrxUB/3wc6x+pcagxDOPyOt3T+0u+E2XzV229hvQVUwuq3VTv+5Lf5RUhhmcaR/2YRT0ZlS4r/K++EGq6r6IVE3anVbj0r2qoxZGSKk1H2pzqjoQj/gPrGWr1S3l+SnvcYf+/VkS7nG8kK6RCNm383UhnD40tutfdCCu7JGm/peUyU+M5BLuDydUNqoeF3WGZ4ZssLV4wMZxl5nmyqL0/1YXkoPSwjZaWK8xN5xMJCIoiOP15JmYvDfyY994uzhw8GBF0eicHr7e0XGFloWNs8DQORQgGC00t+n/5lgE3y0nke1zdAfL26qTd9oYInrjANEC/vnuw13ltWfQOG/yTzjHubUzNParuQUfwiU1vHzVOb3hgu6v/kLHTVymXcmkkEolEqi28TTiw5LVvLfNJKh1d3XT+GCceHvGWZ3FjWtHpTTZf/JDsV8Imkdik6iaPG4HvveN32rGtf2tRyAVsflFQ1tF1Nu9/6LnnN9/fjGvKSGwSiV0VV3TlW/tt/8uKH57A7Moa4i9e+0/mxpSzSSQ2idTu+0/4Vh2vM2ZNbf1FFEIKPPEAACAASURBVEK2oC4i6+fPvHbvDfzhaMgf+MoCEptEYme4JBzcaPsjfqwA7su0Pr5l7wOs+tZWxO6yJUzTMz8QF7HPxU7V5zm/veKil80LdtEuJMZdR/iRS4W9XDaJPXKKTlb1fA6xbOhsGPZUp12ww3IiiliGuXQwuKNqyCV5AVscLV+2tHzZ0vJFY+J7USUZ3XTVa0PjbJcboohVZHAvTzjsdR0WXq5/VUxgxKuWhOUmRETP+lw1jSrrH44qLc50gT46w9BsuWX/+w5M5gv1cU+gWk1fpUxOdoi/sTIuLotHJ/HoJE5vTbXDQv9b7xU2DJZRSDkN9NJLIafnpsRYJeitzSsh8egkXm8VLelb92trRgawnCdsNo258WaQpUkPncSjk1gdOWW2K8LMzEZctaDgd5KjdwagHyYl5PHoJB69qa/RK0Nveaj5xeYRO1RhFz3rtwDCptSkAlVJWr13toGO54WR6auUiyQcEo9OYjXHVjitC9CUvkq5UNKX25ZwOOKf95L9rt22+qG8msSjk3jtifVBO3wNfxgRwFJqXr3f7ki7K7VtJB6dxKMXt2ddjP1ra0q4dU3qH0mmR2vuvV/SBClEYkFxWdr39iiCqqWvUsYX8vNKk7+1QxFTtfRVynhCHpnNJrHZmXcSdG1RxMT915zaioHNgSIQD51dVsq4Al4Xm01i9wSnBW8wRhGH0H/KSQMbDo8hlt33GXO5VFRbkbDD3hBBCfNMzJa5xbm2k2JzIr+0Ij7tGmPX1CfQPJzMPSGHnf1k5ebTfqVdcOXRXT2SLc8PDK+x2epXn69+zM3sE/Uf8irkQjYl0jj683XB1yKHBrNhllX9vdf8xU2h+jFUOlem+lUqJNLqyMxjnzgevVU/lL8drXZnA7/6JSuuRTzQJVkh5JADLods+CTSMHloP0PPLz69w+Lp9aE3A7vo7P5+EzJht/8Ff919yYFlGn+ujeFXvl3z6f8sUtqn9JsY0Fvxh5/tTDz6in9GVEPJ9cErjtjS3JzA9RbEBf6Z8b33eXFIUbaXquezL5k1/LOxgiOdXiGiiHVMMIUzuolKLOJ1c9gd7P6JonbhUE6KwytGKGKTEM/gq5+VLspyW2WEm2Ns/mJkRRt/3ATuT1+7W2183sDeRpW+iE1cVG9fG3vorTvY7fouBk+jNldb+fd8Bdf9kSskiTnXXoiIyBGKBna0SoWEUV1l87T3TdxQzUchFDfjQ/6Y5XPjSjOTLJb2l5Sxaips5/va+ajln0jMDM7467UA71A+l6/6GEpRLyN5r9vFd9IKuoYKyli8WkLc3+9k3+kZ6BilVMqFvPbbdyyWhVraUIZK9rErbsXc+iAppVQklg+UFHBaIgqtxmx5ltFLGjw3akxfDMMwcTsl6/fAP1+OsLPo4NAkqvdXSLhNfjlWa+LDbw8dB4rbejJPxpnsL61j92+bmFxOy6zzPRDmQGijsUQc+r33S7oX9M6yyz4mw9IXwzAMa6nP/tlRb1j6qmmqTT9sj05NyzO/3Tk+4ENLy5fGnTbHFqWpncqVS0U0XrNpkOsKFEXwxAWmposMrH9Ir8hgiKYierH+9N34p/edjsdxXM579DilL4+WYhWxbVPAP5EjRkBS9N2pvLHPccvxvMFzQOyK6lsH3Hf+cadUNKyGJWtuMP4/pw8OpUb1x6+oMiT1232B5/17hl8NpKiPzPhhneNPhPqB6q8qfT0OXK+sHNaTkhZ5I1h3d6JPscafa2+6+c+b9z6g9O0NivV9m4BDnGMcW+giVq369b4SesVFT5v5BMOPY0sLmfdzHc99p+84+tMXb7DY3GK52l5miSF+b3Z7aWnMKyNP+o4yTvrapRQIpcMbIhU8PqeTzePItTNos1IuZiR95Xn6lybR8PSQCwTZB13PLM8d3NcrhOJmfNiZRemFLPWicj653ulZb0uXwbYUhYjaE/Ol95VvSjuH9sMKAZkc+pH75TdyawZfLRXT04pMXg20saUP30CUEgo9/8+Qq+syi/tPOEno5dWOOn56P9VQhn1f45/3nUj6RqJfltRy1RcqIEUV2q6ODY4Zav1ml7VF/BBiebVFfTmCuo7EI1FmP9dqbHefWsyu8qu+Zg8zfZUyjoBHHnakqGHqFoiFagO01VUm/uButpDodqqgzjsrcIMFiqD42UamLwRlxfSMcXLh3kD63oNHMn2FnSUBVz9fPp53dxw1Tr23Xle8hkazY07r96bEdo3ckSoY5JB//DduDrfK6q/nsSuqbx3w3HOmvHZEUUaX3zWfVz4IvhGl2riYKWZR+7+Isskc+dttic/6aR1+/U9ZCQPxS88vPr3D+yiurnlYwfHTty/T+viWTw/8HVI+8QGbJ6iuIna3LWGauf+tajJNrhg52oZC2lQet9XWYBrR6Lus5tp7rwBPOn3ZkXFeH9lYLLcYmp43xE/DoQiK7s5svdPH6eQMTXSJQi4V9XCFfMW4SXlv6atlSpmg1W2Om77lyB2uXCAp/Nnp5Fy/oJz+R1Tpe/b57OrhBUemr0zCzi0yeN7Hwo6hftCnlMsFvXxWj2QwaGVMbs2tiMuvJqY2jqwGKYUCcnAGujzUI5SHYRgmFvRE5xBeDHbyYA0vOvn0jdLfXTG8H5OG9BU2dCUdizI+XK2+SxI2dCYdjTY9MtDmzGvOcDyzedzdyNq9Jx1yxr16bgwPP33vXV3l7W8diTMt/P8uJ5GlcpFESOWSveO8VhuiCMHgOf/M2CkIYHLY2U9WHsIn1fXBLUbu6pFMX6VMwmdSusbT3dt3r90lugsqLm2z/uLn4vLRTSwKZoZDzKfv+J0O7E/0MdNXQU8yjfjovcDLoVQMwzA2OeC63+szifMXmy9bZqE+6SwyfGYG+sHh9OiBbtP3lb6KmsDzuu998qd12tR0BB1815acn9zNZuKcT9xpaVFdFzRqrCu5VJSR5b/OHH3a0HhJYE7SPTZBTyZ9u6vjvnCxWqhvc6KkvYLJ6eL0TxFxdssNUcQqKoTKE2ncvjsyNzvbLTP3NG7ncjT+QB7l9FUqpLUlhCecTs73ubbMT326+qLvhWecT8718knpLzvR9BWJGL5J557390+9S9OimMLKPOx59a282tFfgVLcd6fcclGAgWEPhmEYh9thl3DpjYiI7BH/B1pKX6VM1BFb5vRphLNJR//npNLKcfHoF6lJOQP/g0qZiMsYfzfSQ2VwR45gMyH/vvSlVp7yt5uJM9ufVlPGH+xqoRSJBenZgRvMUYRgsDe9oXKy+Vtq8/UH2/5wLyY9emOZPXoeyfR9MMj55Re2WH15/E6VhidZWU5xm9/yPeHff2ZrzPTFGCnmURsG05fZ5XfVd/0nocRwSlcXZ/REZYgHmxDvK30xWZXfmW92T23ll9aS87OHxSy8y59FTY2DF+9qGmlSKqH6x3qsMkARguFzJi6XyjtJE26Enkz6yqXCXh63i8NjS4cNBjnWed+uiqhNjtbLLCyWmRhMw+EQFD/XxOxEhYbbHD3q6VtZjJvuSiB0M7v4oydWt0Aw0Ho80fQViuhet88sCQjKuMubi3pY6Qc9rr5dUK/hSQm9rNJ6kT9Bn4xhGMbmkKzjL6yMiMobUUxL6YthSkFdx+0j/qfmeV1RHZ28EGi0Lz+vVizWyq2e/3XpS2tKP+BsjJgFGNRRWMMPmaSSdusgl5dRdKZXWnj35OK3wmHPh1/85pLfzoOq7909RunLrq4nHrL/+LuM1NFNTVxKNDFo44YQw+T+iBszfdndwTf9N34WYZnBxbD+9N24Ldo+5+7HeveXvpisyu/Mvj3f6YVVTk380lpyf/Ywf9oy4J+Kjm71cTNGpC+3yTDM6x1zs+dsrVcZGMxHUQTFP2NkssTc/Ehua90EDm0fwHlfdkCo7VJ9FMEbPGdqttTc/MWBScdIf01MRRGVReZyByeGVKHhiuNh6cv0C3V40zL6f8H6z4yfvq1Jq6x9bChjjiM2NVTpO8PN0HaMC2LVTDR9pRJWaq7eQl87r7uMgCGjc8ovhVx8PTmna9RzEiElNpewNMjRm41hGCbid4dm6q8Mf1jpK27ryTLJdLPtZJH5A5OAS5do7dDpX5e+1SVRX1rjEItg08beUf837JjbvmsMUcQ9ObhrUsOkVDjoQvhO3GOUvkpmTyQh4Ksd0b41o57ranM957vpYHpid/+vZsz0JTVb/eGyZt/t4FolhmGYglfgmbBrk9dJF9LoTaQ9tTktqXF4r6t7T19MRr5tcuzzQ2ccskbvFe9Vf/S6xdpmJx/3d37B3Hzp4GRqPFcf/ySKzjQwXmxmvtTUeI51iEFB8i+edh8HJZz0cnrTAEX0LF43J26Kv5PPuHsVWD19W2tv73a1GXgv0wVE/FO4MdO3uzpum7P1UvV1G3jhfH38U6pRNTqpJC63W22iiWWq/iUFGe4f+GVkc0Waa0FD6dvlFGS3nGh7pY4RHG06f9z0JRV4ziU4GJDvP33Tri5duvRFXZe2cUsp5TxK2DqXs7urRt9MVi6U1egNVUwnmr6YjNdaYzPX++Y/o68UVQj6+rJNGvpzQizsjcoivBQaMTJTMYzL63RIvrIqKb1ZiWEYphTTCssslwSamI+4V5GW0lfU1JXyS+Cp+d5X3ol1G2x81qIpS196g0GM1+6E4oyRY3NMcfp216fsczREcO5XKztH3Rqnxz3c43UUfTUkL4U6mVEyyh32rDt+K6ayd/SdOIEGj1H6YkpFe8adM5/b7j1TObxtTVQXl310r8+vbl2D54DYFdW3Djh+diw3c9g2xMp2jNv6ittPpo3k/vZkpbS+Fv+T00dHMuJGDMPR3uzvV+KewxnsUnq/6YspJOU+p/bvPYSLrJ5M9ZeXkRu108rgrcA0vw6OUCJmCvjq6dXdU3bey3YBim6OK0ns4XZzud18EV8qYQv4fSIxRyig8bjdXD6Vz+sTSUffbG809fTlSUV9fF43l+wU6vASsX9QrTcjy8rYo+KsK3eHk/m7USVZFGb38Hzt5nIj4+2WG2poeVaXddt6qXNiCls4Xvqi+LkmJvMIuO/yqd1iZerdWp5b8tzn6hN+q7n3O0f1Szv7DIIgyMz5u13Hz1+5jOOTeGKeb2Dm8MdlMlFynrUNbfBDTTh9MRmbW34h5PzK5JEXAbP5re6pYckDF+0olcIO2u19nn9vKh3+E5VzW0ihuwJxN0gDY4Mp+W2U+N1ef39Wqp6U0l5GybXQUzrBpuYUTIMpPO8rF5MpxYTEq0+6nJzrdXmp79WlvleX+l5ZGmzxf2U1o49cppqC3mAU4YigpttjCvMGN1whOTDZ/3X8PaRva136jw6OR7PqRnV0m+L0VbBq//F3eA7Frw7PT+0bNpwktTnjWyeTaXrmh3Oa6jR3ppgQSvz17XvPO+e0ch+1QeEeVRNIXwm9JeH65gmmr5hSE375w2lPvrB6m1Xp5FdvisklvOLgtENvOXx3cTCAOYW+ybtXun9PqG1RuxCIXVF964DFjFmGm35Ki+ofyo+V7ZywY57D3hMld/hqF8fJZeTMorN7rN7an+Rd1L8hssoqb52PPO/aSlYLl5a4zKMfOWpM3w83RJgkjbONyUQl3qf3/XnWIft+q7+8jNyIbeZWh9LKc9kSscbs7Cn+0cPqyXu4v+9daGp5VohEgsRk1zeNUcQjNb6Hq+EOgHJJH5/XJ5ZpvDngWOd91WXdtl5qGOjJ4Gs+nOlPXxRBUcQvv4EnVU7gvG96rPFsAropo4d/n4f14nL0QwRBnnjyE8u7DV6q4Alqbgaf0Qm09ehPUKVE1mEXf3N/Wbtg6Hcn44kKj7trTF+H2V7Xb6j9UpRyXkub3/vDRuGQ0Ln5l0KIeu0ite9RqZAxKxt91vjgPh8MYCmzttbl5SD80coOtTvtKeVSWlGd53t+xF39YSntZZZZxN84EGv6pMuJuUGm+ypHHWbcJX25NZ0xu/00pq/pKxFOzkOhyqnqiPtflOM/TV09AvbQ1Fdhn234tK/x0QcfwIq++OzwD/RwMyx8zt7pYGAYxmyxjveYTyQ8haIIjvCMofH22NwR27SMWv1XkC2CI2yKykthYszO0kt+lq97x7u1c0f96qa615VSxqNVXfO1f17fYKFjtGNr/2CT1OasI+7mM/G4zXGlWQy55jtyTgQl/ubOby84ZjVxoOI7UeOkr4RBSsVv09FZ8vziBbOnPzlt1rOLdXR0dHTe3vClZfGo0pyOUuf/09FZ8vyi+c9MQ5Anp82Y+5yOjs57W/baP0oprJSJJazKBruzXot0zHR0zHR0TD7eF+uSLWDxh11tzq6ovnXAY8cvmS4+qYfXmqpKLlwfeMqlg8UdOdyMQirltjfZn/N7a6GJjo6Zjo7Z81vCbwSTOUNXsDOSTWO/WEB8ejp+1hyjNT+mBZYKMQxjFpddPWg7f7b+9On6cxd4nrcb+8ZhMlF7vNnPv14wiLm/+q9SLBHR+XyWRHOqYRiGdRd972GJPNj0xTAMk0qEfXweRSiZSAV6hAmkL8sn0HIxwe6fVs13HMpLslmsqnzbxEUz+Kqjo+Y8j0UGeATnZNQl1HRbm9ZrpsQZKDrdwPhsneS+Oslicj69x+/oE0/+GjuBc5NyrqAvLQ+d53VZx/eyju/l5QF/XWzmMAcqqZhCzGjxWuJ9bpbzH0+6X3wtWDUOpUIgbjWLvrTY8+QTLn/M9r31wdAQ0EqFXNTFJNkknl3sq1rmtVVhjs5U3qhb1yrlchGJ3mR++4LqrXV8bn4QGRoj5A2OazFYUiZnlHXG6rqrSv71QYyPX3drcrX/RwXlFCGPMXgcI+7Nq3TS8bms43PpOc9T011OPON5Scf3sk6oxffV7f1lRN1p5faLPM/MdDkx0+P6Z0mRiXwMw8Sk3rwL4RcWuJ94yvXkvBCbX+o6MAyj9VXgM8wOljXwRowQoZSLWDX22c7b0jM1da2cUgoxp80l1nMZip9laPy8mZmOidFcx6C9QcGH7Iw/i8iOpfLoolE/FYWM111+IcB2ur7BAhOz540N3/CJtW9hqV+S21yX+auHqY6Z6UID1T09iXONTHTMzHRMHY9n11VPpmFYKeOJBBk5wZ9Y6c81MlliZqZjZva8EXGmZSC+itR591sYjYMSf3PnBbPIErIUsnfixklfpUIu5vZRRqHS6LzRbXpKuZTP0lC4jzH+yEMPg1wu5AopFJ5q6mOKhaPGxRk471tWKZKwaP0lKX0i7lgtjwq5kCukDSyTQhfxhm15CjFPRB94lsYUC6VKDMMUEimHwR9YEwGbLxtnz6yQCIq9z57H6UdNqv15bNpK38noT1+c/c0mJkPjl8UqPWptPAvFzzYK99d0q0GJuOasudEzejaX6pmsgV2FnJqzw5g4HcXPMTZV7ZWGT0bP4NAnUBRB0U0ZPYL73cG02nz25LHICd5ERimT8igCjmrqFXKG146UCplA7Vm+QHU6VinjifofpAi5A8NFDbxGqRCKOYOvoooEwjE+iFKpEAyV5NJEojGOdJRyhZg1sECaSChSKKQyEWNE+4FSIZHyB993aBLymIMllXKxWpk+sUisVC1fwh76RHyWTI5hGIVaciMR3VVYPvqCfx6z2jLL7pvC0vu6+/y9UcqFYiGNx6MMTgIRSyRiC/hMsXTMJFPIeCLB4EtowmGjYWAYJpOJWQK1ZQ5NfJZkMgE5sHypiDFi+XyRYMwbokxIueuhX3F2WY2skQdoYFwTOe/7OOrMKj612VbTFUcPk0zELfE7d1nf8D4rwOMbSN+3wgoz+qbgJvX96YvzMWmnTdX9tqXUgu+tTWahuNlGJotNTZeMnkwMn8bhnkBRRM/+lubqr5wn4FN5Ap768FUKKYvPp/L5vXebGPdRYVdJu7xo3q8BnEndwQ1gGIYpxOTb5Y5v+Rh8P3zwZx6r3iFd770YV3sKxIDWlLse/p++fXo9A6q99wrSdxROb5xp+AfzDWZNx8+cZbjws/AbkQ++F8eEyUQ8Hp8vvv/zM2NTpa9rvEcb874jRl1RttehxILkbq5ArpiynaFSxhEKaHw+9e6TkK+l4SHvrtVp1/PbTQuo3Ck4qAEYppDIhHWd+Vdizi3yufT8wLQ4wOhAQUGdWKilIbkBhmGYTMji8EUQvfcB0ncUpULMF9GpfKpqYoh4j8nGrJByRAKqaIw+WfdOKhVxxjnN/DiRC5hUpuChjmH5n6NQyPhiLlWoNon4bCnUesG/BaQvAAAAoG2QvgAAAIC2QfoCAAAA2gbpCwAAAGgbpC8AAACgbZC+ADxwEomktrZWIpGo5uvq6qRS6Yh51b8AgMcEpC8ADxaPx2tubmaz2c3NzerzXC63paWFxWK1tLSo5h/2mgIAtAfSF4AHq6amRiQSKZVKkUg0OC8UCmtra0fMP+w1BQBoD6QvAA+WXC6/p3kAwOMA0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQAAALQN0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQAAALQN0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdIXAAAA0DZIXwAAAEDbIH0BAAAAbYP0BQAAALQN0hcAAADQNkhfAAAAQNsgfQEAAABtg/QFAAAAtA3SFwAAANA2SF8AAABA2yB9AQAAAG2D9AUAAAC0DdL38aSUyaR8sVSkUCg1PS2XS/lSqUSh1PgsAACASYL0/ZdRysQisUQqHxGLSqlMyhWL2WKJUC6XyKQ8sZgtFgtkCrnmpbBjk/3XGrqcLW1pkclHLgxT3MkP3uQabNrQTZUpRj2rgUIu40vEbLGYLxsjzx84hUgi5ojFbLFUolRIpKp5iWiyBxAKkVjMFovZIqkUU0pUbyGSiBVTsMJCkYgtFrPFUhmmFEtU8xIJHO/8Kyll/RudRCCTS+Uyvli1OYzeuB4HCrFEotodiRUKiVQysGtSDm43cjFPIJbKp2A7+heD9P03UcrEXakWOBuXqCq2+uNyOdkz2vtNFEX0XM4UlzulB31khCJ65ocy66pFGpYjZ9X+7Wf/HIpOIxB3p9aWcjFMlaBiiUiukMs77YJcX0bRafrEPekNlbz+VynkUp5YxNOUxz21SV87mkzD475MqS9kyWQTiDy5TMIVi1hiqVQ5BTVsmazxuo3ZsyiK6Pm70drM/CyeI6CIns1fzRy25gOQiS1WWnvKiDgDRRG94FBBl5ErcSYORfTsiGSpdFIrrRSLK47p6SEobho+PF7ahbPTQ1DcdIKTFW0yiwUPh0JBi84M/QBFEdT++5RCj+K47aYogpp8GVuUx3/YK6d1clmbkaf9CyiK6HkbtdZbRzq/QkQRPauT5d1d0v4yxdY7jxJ9itu58od0tP4ogPT911DKxB1JZresnCIq2cOfUJSXxOy0RhEUN53gdjY2dIeXFYKi0wjEnUmVhZzRS1KUFoZ/bokieMJXKTWD0dtalfilnc+F8racyoQv7Q0RFN2aWJHVJ2KJ+qf68tgttgbbkqoL2ZoqxOT8PS7mT6Io4pES28OTK5VSqYQjGnr5iCklxfVNYxSxivQmswST3ACV8pQEmxcNUATFPU0Mci4IWWpmgKDoDKLhL2UshvTuCxhjsbK4SKM5BNViwwJLQ54h4hEUnUE0OlU3qeqvUiENDdZDUBRB8XMNI8PKgxAURVD0GSOzK833v9h/M6VSoZBP7ojmoVEqGuuyjjroIShuGsHxx5CwIyH2CIo+RdDfFJmTSH/Yq6dlSnluptd7piiC4mbq+xqkh662M0FQdLq+waG8zlbhUMFiq+0/ErxLO/iPbf7eQ/oqFVIhh9mPxeYIJIqRBeQSwWAJJpPN4YpkU7u6jy+ljJxkcfz4OcKIai+mlLEaiMFOz6O4mfo2P2WlXQ72Wjle9GIKeZdTmPurKIq4xDk3U5kiEVMkaqhM/MrJbI6hwTN4q5XmBgsNcTOIxFkE/FMobgbR4FkjowUD0zwi4eu0oQqxGk5sgudbhjgExX2T2Vov4EQn+qyzGHrh8MlwNgH/JIoieP31CTV1XE2/E4WMIxapVm9gkog1tCQrJdSC7yyNn0bxzxg46zXe+cPCdN5A9NLvO3oxpbgna7uh/jSUMNvQ1bSj/Bei/gxV9NZOsuVZIehKXaenh6CEZ008bLorf9LTQ1D0GWPzxzB6lXKFlCcWMNkd1e0FERp+VRiGKWRyMUci5MkeyYZKpZzX7hbvtUwPN0Pf8pv4xBvxoWv7ozc74SFFr1wu5Q3bdsRCuWIyX55i5AJFTLFU48YopZedcLGch+JnGTicL8877WKnMxC9LcIRhcnhZzeetU2vpz2mFeAJpq9SLmW1lgRdWD9/4cKFCxcumP/CG2uOuNbyBwNYqZCJ+hoKfc5/vFBlwbPzVry7AZfC5kACT55SRk4y+7/rBPvMzhHPKNiJGSHrjXBPEz0vl7UW1KcfcDKeoW/wVVJFAVvjohSdtcnfOBhO1zeYZ2T8LJEwDYc+RSDONTT6KLo4s6/NOcT9VRSdTrD7o7jKId5vrZHljzkN1YKhTbeiKOxkRlkhU6Jh2eSCbz3tFho5XawcamIaAyso0ukVIor45OTRR26UGKaUSMSsxqQ1tubzjIwWGhsvNDachcc9oedt2tFLkQ3fjyhoTv6Wiwn42Yah3nR2Sb7fS8b6swyMfiljTiJ6MUzea+5m+AyOMMcwMkooLM10nUMgzDKcfPRiShkZb6eHoPrzTWJT5eLiFDsExc81Mb/6+EUvhmG8hu7EUYVRSgAAIABJREFUQ57n5rqdXxXtrzF9lRJKRpXz6x7/fJFb3Pno7aSVvPyShB2muBn6zv+XWZvbVnzK03S6PvHTqJyHFL0KsVRcUBCx1YYw29BoobHRXH3CNNTlZHFzy30GsEIsEdeXxW6xM55taLTA2HihsfF8A/1pVqFWTd290uEnthUM/yjX14j4WQYB5u29xaWR6ywNZhoYfp/XMSp6MQzDMHLE2Y26V/1KuwSPY/5OKH2VImpd+NkNr647GdKFYRiGcTpKbPbPWb76uH8nhmGYUiHvq8sw0n3pw51Wxf2vYbUV2Pww75llqzbpp0P+To5SRk4y/fnn03rhI9qcMYWEXPK7j90soueVchKJXa8f5Pyivs3PuQ11mk73Yhgml3U6hbm/itf/KqWmhItVFUdstUJfC8yKowjlSkwu67ANcn2NQNyTXl/Bw7Ceoh/cLZ/Us/i5oLVZPLWfabz0lUl73YJtXyQS5gQVVbBVb9xh6mH/Ig73BIrqZne1iwYPuhXChsQ3LUzmGoZ60XlsasEBC+P5RGd866RO92KYXFATudDQcJ5RRKRIKqRkbSXqzzVws+iZfK8oOaciCMETF5rEpmJKQVfKOj3cPGMv58etfXIYYVdisd1Y6ctnN7qk33zK+fya+LCER+0kqlJKqyWEOc0kuhzPrGvktbvFe60gWOgmlhYJpvBdFBKphC2SCCdQRVTIye5RXm/g8LM8k3w7OBjGTervBeJ2sZxEvue3Vkql7Rb+zstxhNn20R4dDNXHotQl73YymYZDtyfXlXAGQ10has3c5mgx2yDAgtRHpZf96Wy1mOhwqYrSPfZxMDn89PpdVwMquid7+ulfaCLpq+R0llr/36sfEvMHHuF2Vbgce+m9T8+EkTEMUwq7KwNPfb7qE5PCYa9jteZaHpix5O1PiTkQv5Mg70k2+/nzg6fsRlV8MWp4cugm+zCTegoHw+ork753tv9l7OjFFLKiwrDPrPXneKeGdHExDKM2pu1zMn5Cz/xIblO9QJafF7TRSv/9yOJsuqpq2+MZ6bvW2Eg3pTqHJhZMrvFquHHSV5GZ4vy6EYrYxkfTeGqh32HobPUciiJ63tY9bE7/tkoydnN41SU1jS2UYlh+uutqS1fCZKMXw7DWv20sl7pllYllCgzLTLRabupmOQXRiymVjeeNjRd75rdimFKhSIw2ft70MY9e7C7pi0lp+fW+H/sbfVtc0avtNbsbZlph3Jc2/hfvdDAwrL2p4JSH7YHbJVMavRim7A1M8H/HzO/vKjLrbkW7G9K/czJCLIIN63u5GIZhvPSciO3Wxs8Z+/5T3dlzz2/NCk/wetsAnW4b5UpiqH8sSm3iF3aGT+hZHi9qb+3fSslOwZ6rneIDu9lCDCvND/rM1ulKVc840YthGIYVm3321nHj7CbGY1f9nUj6csmV9seWrjrm26H5eRGlJvTchmXv/p9H8/CUZTZnm+oiOqs/My3U/EowAfJq/7P79nz7T2iF5qbkCVOIOgt+9LKdOxC9GIZhvAacv6MOgfhNWk1BTd637jZzfdOjulU7QaVEImYJBX2CXr9Yj7cM3C5Xd5LH3UAUMsmEL/IZO32VbQRn60Uoinhl5dGF6nmfn+b0ihGKoOh3hdTuKa6Lg4do/PR93Ck4TWZhLksmlL7clIzgDcYo4hrv1j7J3QWGYRjGqb3ubbcQRXemNlSM+M/h1FzxsF2Aom9FlBRoPA81YcVmn63aejqgslv4mMXvVKSvuLc2/OL7yOI3PybmDqscMZuzTXWfeOHdrebFml85BqVcKuIx+8bDYI3u9TXFFFK5RCybbCVqGKVMJBOL5Pe0THl1wFnd3ftvBpdPNnzJLuHeqz2TA7vU+2JR/GICvo8uyuwj+cT4v+9127uV2icQ9AkEfYJe/zjPtw1RBEURHGEOUX+6R0oYmav2pSslEhFTKBgoL6gqifzYM9qmhcq8ewCPnb7syj8czeeiKKJnc7GWRlU7oGu7E/SmqT6C4r4vgvS9f0qFQsKVTukPe5Lulr4KhUwoFfLHvHRWIZVLBVPUJUspkwi4d9n5sHki6X2+m1wu5YpEXOmInYBSKpOwRWK+bNThrULW0ZD1g4sxYub/ENKXW3fD2+45FN2aVHOHM3zdlB1Wfk7LUPSdqNJC5mR6WGBYsdnmVVtPB1T2PGbxO3b6KhUyIYdGo9FobZWZxod03jjkUEZT6aMzuepdTzgdpU7HFq9Yu/VCRLf6EuiN6QZfPfvaxrPDHr47QUexz4VNi8ezcsshYtL9tkMp5CKeiEYTqCY6SyxQb1JUKsQCMYMmKIusC/cpr5XLhUOFhRzeWHmskAjEzMFlsiWiYZdPqJ7tS7DId3eta8YUEv5gYSGbJ5ON+atT1Aad3/veJ39Yp5Hu89MO6C0/HRh7q7qrp/87kHCEAppg2JSeHfiZjeECY5PFJsMnp1iPwqRvfWKNmil9Q0vkJKQEfGI1UMbIYAYeh6AoYhnh3slUnaCTSUVMoYApGf0Bx2l5ZofHeqyxNFls4vpPA71vKH3l6bcdVhiiCM7+RiOD8Uikh0IoGvkdDk1iMVf9T6E2Ak+pkAtpIi5NxKWJeH0ioWj4DlMuF9L41MqOmP15dRimlMuGCjMkmtdPqVRIpPzBYnSxSDzGj1WplAsl3KEFjl1SoZQLBkr2iQU8XoeG9FUqJDKBqkwtOZ+YYXG9hTnqLeViqYDGaQ5rSLpRTer/s38FBByZTFNEKqRyMUvEVSsmFaseEQt5cgWnJtb4+Ifj7nze3XfeLf9ezxYoJFIxUyAoLLt9wNbhWFZ9y8AnEEpEdAEtNit8s73P1fJO5uDjYhFdIKCRiv/wtUFQFDH1uXinpXng58SSyIZ2MEq5QFVYQA1NDvjQCEWco63qewZ+e6JJ9BbvcQ91fw2HIhbBJvU9NLVzTzJG+Rl362f/v73zDmvq6gNwqq2tX1tni9W6tXWBpE5w1723Vm3de++Bi7BHWMoQlI0MZW8QUDZhGSDMMAIEAiGD7J3c748QCCEEihC1nve5j0+8Obk595J73zN/x9Bkd2p12Ye2tKMslsxcdeVVMaG7PrP/Jt3bl9Vc5nlSQ0NDQ+Pnn0b9+N2gwd8NG60hZbL2iitBPXbgS8gVSSabRkxfej3838l3IJEI+QI6ptzhsvuIn5AaGkiNny2mr3yNCCbR28vO9OYoZPC8EaZDv7HfcjYXVVxqfdHjJw2khgby51Eue6/komh8XpeCK5PWGGwStvonSw0NpIaGxazNEXZRZDqrXdWUeMuINSNNhw559vejovetDa8fhazSsNTQQI4ebrflUtY7vLCbuY6k5CfHVy7d9fCDq74QBAmFvFY2i8hiEVksTEHsFhfrERaWGkikBhI5ytT4GwMEzMB4c1IpulMNRMzhcRh8UfflAxn1aRucrWAIg6GmftY4EgWCIAjKTvXURiJmBKESCa3S75Vtjc8DnSZ2O+ZZCSIh9r6TzUgE4ttnb+Ko7A9q6uo3KK4+Nj+ZIL5CIGAI4+FIpAbS4gdDBAyBgBmajI6MvGFpOcIYAUMghpohNTwyqwc0LxKJiMUmYopdRnvd1PC+qeF1e6q/nQ2RSRbICjBCZl2F28+eV7/3uDU1vYjFIuRiXDS8bmp43/jJ596MmPiCLgIWS4SU1mrf5MfDPKXHvDMn2MWZxGIrPswlQhG3hlhsEn1ltPdNDe+bP3vd0Qp1dSWxGIrPfYlIzKtpeq8fdeUn75sa3jenBdvdQmcHZNop2pfTEP/eUcPrpobX9ZHuF35+pcy+7Nrw3KejPS5/52extxBLp5Z4ZNlpeN3U8L4+8qXJ9szsSkFnAUvEPGFjHMZ3rccNDe+bGt43R/tZHsqJ88b4rXO/PPTVkwvl+D5e/R6hxKdH/Glm8p0hAqb/rMO+7DrPOP85ZibfGiJgVj4d9mXXvojx1ZLem9J3DYy+N7P4GYmU3rBb499ntD8RWNUOET5zkEgNpOUIE+NvDBAwQ5MfzdtubQ3Ll+1l7j7QXJ60+zlyiKEBTN/1VkF1CZvHEYm4fG7SOy+4jckIv7Qk4of3ctf7ndKedNAqq6b1i6r89kfLs1IkopbieIMtvy7Y5JDX18z1OxIh633Q2/2zbNaeTE+WBhViEGNtguFTXfchSmq4HXdqfXLOxeVPZ2u9WP2PzyVnnLSgSyssMTz4ZN6OaJ/3cjVgkagxJefa9ufbb+RlS50DURNtI1Z9/2z/ncIiuTYCcmbOpfUeq9d7b9kRcNEai4MgCIKqYpKPLLbZci03i6T0h0d8a3Ns+c4zNgm4Dz/9EnT03udtd68GErk4PPsdqa0BF50duNIWAbMNfFLVIv8IFApwtn4uh2PQSSQ+T/WoCKl99e3O5tfXydwotS/MwHiYhWX7g0MDidRAWg4zNhyMMBjql4mi9KLAKxGWovx/Qxp/bWJ2NLeF8Gm4V8q7CLNvDREw/VchArEYIj9zNRqMQMCcksskEggSRwYivkIYX8YOcCYkEhGVUXA36NaMN6ltt6mI3VjhNtrr9oSUfGbHj1BEYxU/CL46Os73fgRCJ1eaL14LLe245+2psUmV8o1AEj6elHU54PqsMK9A6UABPhmNcRjna/SorpOnxQJSbpmHlqf+mvQcaUmby2oISTeeEGByorhBTtUSkZiajwvZ7GmwKStfKgQOA+eXajjC7Xr3o66aUzEvdAOU2ReCIIhbUf/mcNhjeIzLiRiHc2VSfbbmVwVv8jbajspv6DgjiZBTE5jruDzM/Yms96WhKeNW+O2lbyJcsen3Up/fqRzQikJl6btDTp3tC0EQBJVjEvY5dLavHKWFsTvtEb1veV6souVZImJxOaRO5WAlG5kn4Mvd7M3lSXvcbH80MhyMQMBsXluVlzqFu2lbmY/27xf1Qm321b0aVNL0RVV+B8a+ErGwGRNvtPO3ZdsdPyH3ikn5GMQ+jy3n0aWd3qBluseu0fI66dbQ3pVMK8A83m0z4c8wh/ROkxzq36HOL3fYcQ2NaatQSATlpUbHvDdcykFR5BNS48xDdOYF6AUR2x9T5MycS+utv1saZpkgn7Ql9P6r7VtivXOU/o4rgm7t1l7aP/ZVQZt9rf2NMXXVLFazbEtI8V361Gy0uem37m+CGuiq2q9U2NcuzKexVaF3NyzGa6HtiwelxOaeB8SLWISsv55YDjMxX5GAxbE/iUbnDqoiRxkZwvTtzRpFIglUnuL0tQEC5pBYKJJIICLSEfGVQUj8AGdBwuW2uMZdnhib2ukeFbHqy11Ge969hmu/xiIaq/jBq7Mj/IzM5EUjaC3DPBvj5+TVMSZAQqPXWEdd/z00MrsjHbu2JW676x2tpIz2ti+JhFdHTDsXgljzvnPlnkfMKLCf/MrCGC/rJJVwcU3vjgc+WJGW26ku1sOY517Y1+/8zCivl3K9IhCz0jvjyYK4sLiO+5eNwUX+FW57pky+gktJK/XbG+xiWtuT2PoBcm3OBU/kQNtXVb8vs9IqxHM2EjlG5bYkMi+D0lHCFQi4FDbW3OfFTHOLEaZG3xggYPo2f6eX59B7KpH3FmDfbvmX9pWIha1Vme4PD6y/08cmZ4lIwKGTmlRBJFGZ/zLqgYRKCDPy09V9bflW8SZnFJeaHXResv9dXGPbj4lWgHm822PbZXSJQtLaSruzLprbY/0w0m9nZ3vFbd32Si+UpJCwKjrl8AL7fXpFpTJZkDNzLq33+segtHNYBdX2JSU/Ob5y5ynrN9X9N8ZMwuNzySxmE7NjS0z117VBSMMojkZa/WLVsf2VgsVU5h17GWVZ2ax4kvL8O/v2HhGTXabnaDPW1GLlJ6heCIKgqpvmhoMRiEOFPKFEHBVkONgAAdN3MG4UScQlJxGIIc8zBrbNGRLzyI2Buh537im2m/IpzNRDrtcnphTK/iLSuu+t6RmdC6Bd7CsR0curvBd5658slysqihhVtcF/BphtQLfLQ8Jh1vu9Q0wJ9gpWvK0EBHL29WC9BW/TaiTSpI0JuVYj/SxuKnj0w+0bbnEA03lghBL7UjMrAvYFORni5I/DLqqO2BdhJ6s0QxIhl9naovLh00Kh9W3I58e3779HIOC+S/GZb2M8zNzPsqo5KSdkk7PlCBOjrw0QMNc437rW/hBwvd8p7UnLboSWNn9Rgyn7275t6jU5tu0DGpzZdTkvby77RRWzVh8wffPvRl3RMGUm+x0X732X2DWQPaMp3DhAV+e12Zu2qTjd2pfW+OqB79S5/rcCiRAEQWJyrHnw1mVBZmHEpiam/Jb1MmGvNmLewbfhslbHPtmXkupwcpXOtnu+uRRlb/9bxEJ+K7vZL+blYmvzn+QsO9rMeIgBAmZgvEWx31eGSEDlsJqYbJqgm2VbBsS+UvXajTe3PJ5HJHyqt2ZiuOkQAwTMv5AhJFg4GQxGIGAIxPzERg4haSECsTxtoOfzitgNpU4/eFgim+lNbPmNXNbyZpfzJQ1f/3eypL20L4/THJ6qPy7guS8DUgmfQMm+/Pou/F1W16I2l1kXkGI4NdjDnw5BEMRm1HgkIX4PfRmiEDRDTfbllNfHH4uyPVpU2T58WiSioSqC90Y63pC1OdNLopAnF6l8+Gjvvu6W1Zfb8fOzr0iQkuq7wMpgqGOEWx1V9oRixCYG6FoZfWOAgLnFBeHpPQ8K6QGcz9G5U488zantnxLD50K/2lcs4lOxqd7mJz9EvQNGQyb6+kq7dcdzi5S82ZriHLV8ls953ybp/7u1L0RJsA7TabcvFf/yjs+UIcbDRyPHjrXquq0/nx5f0/bJPtkXwobc3QNfetKqfyq/LVVpx70dxlq5XMyuxsrJrLt+X7GQR2EzCUwmAftug7MVTN/mYGrpe6WDtPvdvmIBjV12z+npZIsX+lgK+ROO2ILLcv/B0ACm/yqk4e0iQ4MhhoYwBALm8DborcNXCOPLAx1CUiRgZmbpf+VyYbjX7bE+XbcHWiFhGbK0vbQvg9ngFHNtSmBwWg9fzq4hxu30fCjrQu4Mtykl32bsK6QVAYIgiEwtN4u8BY+KzlZIpib7QhC/IQbtvCzQXq+insCmEdi0vJrEi+HGB1HZ5T2cZr/w2dlXXJ+x84U1zODp2dzams6DLQpyAlfYGg5GIFYnlBcyP0y//GT9hbM33A4tI36q5euBof/sKxbxCUWxjrfX3A7rNO1IJOSzmZxPoL2wMavg5uona47moLtqTExNdopYNuflJX+idEe39hWT45GhOnD/uyEtENRmX93V4Y5pPcfA65t9ocrQO3u37bjtk0MauPnNkvyswOU2CJi1v2ERDstgNMo2dF7Emmc2PyGtxllbt2+H0qtLu55uJ/uKuVw2kclOfOuupdq+Ih6JxaYJuqxDLBa0NmYdcLAbbxnoRqQz5PezmCSe8NNaNpWStdHEYJC+/aN4/8EGJmvdn3+LQMD0/f/2R3xlOOCdvlL7Gvzoae3S8wO3t/ZlshpdYq9PDgxM7uFCs3HEN3u8Hi7OLu96j0u4hLd5VuNe29g2QRAEUajlllF31Gvf0NiOX6pEKGrNrYo4GnhnnI90uz3u9ZPzRWWqOlT6k8/OvnhMzFoHU5ht8DMcucsd3+Do5zIRgYB5vI1t/qAIoFL53gkt/cLk21/2lYiFLaWJjrcU1AtBElZ9edoLZHCfB7z3H8zyCqvDzjq7EmO7Zqa1MRjhp7s82Dal7WfUrX0p+Jd3vXVWhzmmsSEIgmiNAfd9l/4ZaveW0dWNQq6QxxW219n6aF+oMkzvrx3b73hntXxgGUZakW2Uk6tsI/hEe2maIWAGxsMtkGPlRDvO2np59PssCh+CIAGfQ2JzWd0Fm+2wb105o8k9+Lmmlf8+H+vxKu0rqknSffr8SlEzQX6+vljQ2ph10MFu/PM3sRSWfJlb1JL911PLZbEVNX3qAObRm5sIjS0Mfn8HtaM4vjD82kAamSQ4piVjrZF0GhIC5pzW905fiYTb2thIIJBZKiv+IiErJ8dklKflE0rXH6FELBHQ+Z1HXfXCvnwuMTbdaKy/o4eSh7hYJOYx2+byCJqp+XeC72knpuG6pGMzar3fIX4LfRnGgiAI4jJxvsnmcyPC0xSyqa6W52Jc9IPEF0/qW5u4LOZHWDCp3+wrFtA4LBJX0KX3uZ/tW4B6vdQWAbMJdKghdemBaA2KdJthivjaKzn+g+zLT9ZfpLVZL+xLq/n2k33FIkZt7mvrs4rqhSQiRk1GuNWpTyPSJLMl3iZo+9qgZ5mCzqFZJIIq7JPzPiuPZ6TJSsG0Aszj3e5bL77HdF5Ph1daanzYZf7BpIg2hXIKXifuXu52zAbbqPCEFApLIkoiI8tlDc99ti9EyXI+t3b3KYtobF8j7EAQBIkEFUVxW5/bjEZa/2qtuGmYm3xrqKTlWZ78TD8dt2BnJaVgCILa7WvzT0aOfoDLbKTzrSJCaFIPLc/16JA/bBwuFsrHYRcxGrMOPrUd9/xNDLmTeiGxAJPpN93SuK+RJnmxVyf+9D1M63pEDfXDYzZ3IjnS/BupfZ1TsWLSM1ejQQgEDIH4Pqyyz18k5JJe7ocN/vaHFaZ5Kv0r4VObo9Z6Xl+fV6dwWSQSHoGOephdIdvRW/tCgtaSEucJvvr3avkKs9vFAko5Psmqsq3nk8cmhGdYaQYHxQoU8ihuoRQbxdxfmd42uQjiNiWjn0x+ZWXaIJ9SImLhQjNtZ4T5BCrtY+43+3Ir8Enngq4Pcz37U+DTe+V1DazWto3NoAg+5N7qJdS63EteVjB9x3+SS7FysTIK0XHbn/4L+wob885626+KzktTNGw/25dYnrDZyXyQ/ovbXaLMigQ1Ft7PxiEMtCPe57T2PdaViJP4eMkfl51y65Qth/rfphf2ldDx758e6t6+YiGpJMH+wh/3wvCKVObGO5xYpbXaJrefs91HCLmYh1sdN/6dkUbly34vYh6rNcUjYd/ugDshHcOxaAWYx7sdF+1JCKngsgWylMymYP3gpdO8r7rXdQy6qKt2uOy+eG+MO4rLkgX3EfP5regiF+98n9wOp5LSsy+s9VRq3y2bYjxQKsqPlZEPD+3aec87i9j36i+x8Fqg67KI7LckJeLqrt9XnvxMP50XgY41JOUJ2qJtIGAIBMzY7K/02kpOz/2+uPwguI3xltS6KlmQOT6v/IGz7Sh9DwNsfSmdjpff6tN321kORRge6GOkyUxjrfE/DvoKBpv/OJXI7N+O5KrIUYYGMATi+7AKgViCS38+2AABQxheKO9N1GuliHjM6EvDh8Bgg7/7cZ1jlcq0fD4jJPnuxJcer9lMVvuynxJhS2u9f/pz/w6rCVtZRXeDlNrXScPX3q2jaVNIYWAQ4XozY+Pzue3hZSQiMRNLeO+QEid3S3PqSW+P+BksziwgtleyJSIeB59Q7L4xxMmZ2J6SVdUUf9DfeFV2EalN1RKRiFFaH3/S/8K411aGtQySosJ7tC+nrD7uUKhS+9rNjw2J7vi1ivlCdm0jyjTRePzLux2bz42RL012oHIqBl7AlDLDYOdv9C3/DM96RxOJIQgSC2jkUpOgF78gEDBLj/OZ5VgOn9s5G5WYN3scDWFIr9vv61rEkFjIQ2WHbXBwu56P6xLyqKf5vv8WRoXp6xcTjAx/C0gJrqe1B8IUCbiYvDCdJ6bfmTrfKGjoaTnR7hGxS56f0NlvElH+xVV8IZX2lYiFXFozHl9dmOZxbv6Y6XufoPB4PB7f2ERkyNdIaLhs252wbhk+bdHlT6HhWQqvIhF1Qcdl56msBDwdj6fj8fjwJ1EbNX0vONXI9/7QCjCPd9t+94O57oFY91Rpynp/49CVo11PKeoTohUUGx9xnL0xzCKkCY+n4/F0TFz2jcsRD3zxsueFmEvnoDzidmrZ776Zn0XisvgSCILEfD6VVOt66eUceICeD57KEHZrhMrIR/9cPIOMKuEMyCOiF/YVZ6f7LbZyfVja2KzMJ3xc8rpnSGmYp5H+GakkDgRBeWnecCsEzDbYrZ7KUvIpUXLCixkWiBnB2RlknnQkV8bb579bINosrnTTd9CroJD7VAyp9z81f/rowYN0DDNb+tm+EPaKicEghOG5MpFIAkFVEcMMEDB95yfKg6j0CrGAg7HfMm70sKE/bnLpKdComMOrsYm4N9XP2oJAxbOoeBa5gpxnFGV8qqNbUyIUUAubY7e73picktMo87RYIqDRa5PzrYd7P7xeRWtuN6iIiasPW+uLWPAmDsWSHpOQ1xBzOeTpU4XpBiJaOS549SuzNdn5eGlKCjYi5+nUkKd61Z2VKaQWVgUsf2W2DoXGs6h4FjGv/p15DGJfjO137jfHBz85UiIr40tEXD4Dz6LiW7HB+Y7z/S0uluDwLCqezeiI3iURcvgN0SU+y3xMt+djiG2RNSVCEZdCev8k2XhKqLM1nkERiCAIEomaE0te7g/zsMd3rmUxK19m2Yz0MT+QV9jU+z9O36DEp4UtNzEabOl+Or0MQ6fja3Iu+jt/b2I81NDgO1MLDWubbXG5KQq9u6RS/eDnPxgbLghKeVVPLyhM2O9mCw9Oj27umBwrEHBJTDqeTvCL851njoA5hyJL8Hg6HU9nUnjdxdHrHYwK00CP382Mh9gGmJXUVtDpeDo9LydU1x45Emn1TwauvO/xNkTskhdnlh00/TLdq9K+fGpdksmGCV2Yu2zTU/m6LL0e7XqqazIZ89bsdX4/4OfxryDgAxB+EybYSLc/DyeEdBnxKOv3zXodlX56SVvKCevCDCK7GaFBaww2DtaRHXPCxkjLePk5CZQEm+jNsncXH3776j0HgiBqLlrvoLMsJz43napVDGyjZLleOnPhgW9G0wAsLyGLthGArCDSlN6rYsrrKI9ZJtYHUsqLlEW0L8h5vdzWcDDC8IdnbUuMQRDUVBK94qnZIH3bI5kV2WR6PV1hK9Eti7O2AAAePElEQVSTLmeEQGxNravmSCAIysvwXeFkM8FGxRbiTWL0uaNJmHBz/MTLrxpa+/t+p7i/tJts4+XcIo2FW6VnazPROjqpz1VfKUIOOeDE9+PupvYmsUjIys23nvDy7gTfuxN8784INO0UUkPIqsd6yt59oB3q8YoBQZCIxio3j2j7yITXpqvzO1WzmSyC11vZu74PF0b6hXZTPKMzap8ntac0WvMmoZv7nlXZlHi0LRuPV8aHxJIJ7yoiD5d0/vFzGhLQzu3n0rGFOJ4pky21ya6LzHeSpUFsehf7lg1BELeyMflKqCx9mMt1bAMEQXhCxvUEq2PFtV3LbWJ6iWPK863pmWW9ucofBhvvm/h6ofzv2Sf2ZnTEOU/nY8nFhd1NDCCV6od5tH9kSVhGTHOnuBQVmMQj7kpvlucXUVUVH/xbL8oL3/G885FdY/0a+jyJH4IgiM9Au59fed8n7wtsc5bSm37fLxHq+6KHO9yVzTj6mGAj9B8YPvDJqO/39Z1K3oevf2o4SN96z9vC5BZaHa3Lhs855/pkBAIB03d7WKa0+ktwC3652MZND0NoaG+Jopc98nObY2s7sadtXWJ5RX/XRpXAbUVZ7ZmlF9ZI+ywK2xIRrSHm0fppiF7JF6CKpmaUXpzJ9kxUWedw1mIxH9+QejfJ+URh+Ze+0LL64NGb4803nLL7Uqu9EAQB+ypBLGLT2DmvUg4vsFt7LDORwKJ+SvGVsBH6CCur6JL+Li4yK61CvLV7ocmJNq53CvB1n1Kk5V4iZJIawu7/MfdO0GfhXomET60r9bw4bQ5wb7/AJyRhvJf4Iw+gMvKZlDrZVlyf/uiNwaqk0FCl3cqAASH/2e7z9pFlX1ZsK0WAfbvAaI61DVs2yXaSdFsXph+hrvmAgIGkPuDMokP2KJIaqtj9gFjALXHeN+uQ14euLAmQh9CcaxCnN8m3fbs3KcjhEgbUegHqB9gXAAAAAAB1A+wLAAAAAIC6AfYFAAAAAEDdAPsCAAAAAKBugH0BAAAAAFA3wL6ALwKJRCL9l8/nq379iSAQCD67PAMAgN4D7Av4IuBwOCKRiMPhYLFYOp0uEonYbLb864qKCgaDIRJ9EnO7xWIxDodjs9lisZjJZJaXl0tfMxiMiooKNpstEonaX3/szAIAgL4A7Av4IqivryeTyTgcjk6n19bWdn3NYDBwOByZTBaL1b/0nBL4fH5NTQ2FQsHhcEwms6amRiGf0te1tWA+MADwWQLsC/giEAqF1dXVHA5HIpEIBIKqqir511wuF4IggUBQWVn5iVR/IQji8XhYLFYgEEhfV1ZWSl9zudz21wJB3xd3AwAAHxFgXwAAAAAA1A2wLwAAAAAA6gbYFwAAAAAAdQPsCwAAAACAugH2BQAAAABA3QD7AgAAAACgboB9AYBewafW1pK54v9iaCmxkE9rqmxoBZOXAAD1AewLAPQMn1qX5vDPUY9yjuCTiMXRv3DIuDDEqtPOKUDAAIDa6C/7SoQ8NqWR9DlFvROwqaRmPIkl/NgZ+Y/AodQ2tLSq107s1laeSDTQ1VE+pfaN6a5DHmVs/n9QvVI4pOpQxLLj9iktn9M9DAB8xny4fUV8DrkOk/8u7KXxYbPMfsjShyDmMcl4bFlVLZGhVKpiHqOlvgKDwWAwmERvgxsX95slENWdyU8BIZNYV1WGaQOLJzN5ysQiZDTjKkuxDRSWcu8I6U012FLpQQLuLd3z2D27Vh1Pb0ErHltWgsF4WT9Ht5D5fTkEq7m8rASDbxX2JG8+Je3x1lmHX5SwVRQs+OSa4mLZ5cRUk3jdH5TR2MjsS4a7QyIWsYlVsq8uLi2ro/IVUwhZHSkwmNKyimZWl+MIaA3JTsd0b/vjQQUYAFADH25fRkORz8Xfp44dpjFT52PbV0zFRJrumTRSa9PdYJwy/TKrUlxvb9LU1NScNX3SmOHjF3+J9hUyiXXZXvcPbl40W1NTU1Nz+q9zDzz0SqvrKmBh9avrq2cNn/yXVXxZqzL1EJMsj23X1dTU1JwxcfT332qeVZN9CRF3t6yapfHtN/PuxOD6ZF9WxNlfRw2FbX2GpXJV6ZdPSdNfN+3+Gzq32zYSPrmmOMZw6+y5WpqampqampNHad+KwLbwlKVlNBQ9238utg8ZVopELGI3lWQF3Fv3u6ampqbmnFmaM6etNkzsELBEJGjF5aT5PNwszZzm7Jm/z5g+8Yx3eVcDC2j4ZLtDC/ZbZQP/AgADTv+0PNNrcxz2Txwo+4r5XFYrmd6LFmJ29Tun09pDvh63eL/FO5LKpHRMhMlful+ifbmVAXf2rNx65UV6jfTxW/Di4Mppvx22TShnKCRtSTTaOW/M4G//uOCW2YNVG0OuL5+hqy77QhAEQamIOZP+7Kt9s400f/5xEGzEudAmevef51PSHi+buOs5ppu6PwRBEBN1f9Ev0w65YWW16Ljz33w9SMeqTG6AFqOhqKioqKio0HHPV4MG95t9JQJWXcyV+ZP+uBiIhyAIgnitjS//HjJ8zPbnNRAEQRKxkFKRbr5j0oINT3LaPsOl1gffmPHrrz9PvuCrxL/172z3wXdaobvWjQEAQL/SP/blNhUHXl0zUPZlYPPfetqFN/YiKRuX5a23dcVfl53SVMv3y7UvF2V/cM2pe/65TbI95cF3T2zZet8nC9dFnC3JT87tWb79UUBePUf1YT83+0I5tutWLJ6rF9XC6P7jzGz95WMm346lcbov+jECDw0dcSmG29EsnWE87w/tfzxxcvZNM5g7d+7cuXNnjP1fP9pXwqPXPN8/YvL9VNkePqMlSm/+kj+vBDVAECTh0+qiri8aM1M/o9PnuOSagFMjfvhl2qWoLpJlN5f7XJ0941oYFVR/AYAB5TOwr7AhN97z0Z1e2bf3fLH2LXQ/smbTIWRcqWJF98P47OzbC5ghx0ZpbHpSpLxPvI34i0OHLLUo4gt7MfZLUmGt24/25TNa/E/8MHqLc7Xy94WM5uRHOsN+WW+S19mybGKl6wHYsHG/PUzp8iF2c7n3+d+m7XIsAfoFAAYS9dtXLOCxqS00xVtbzOeyqCQlu1nYROd7p9f01r4CdmtLY02z8kFXcnzq9uXRaAyGimpZn/mX9uWQcfXN3YzJkucztC+fUlPTwhZ2O4OXGXJs1A9rkIUMlSf/CdtXxCRmGuvCvv954vX4TteITax0PfDV8F/nGiq5YdnNZT5S/Q5UqQYAAEC9sq9YwCHh0O0UFhdXNbU0dRpY2WFfsYDb2lDWlrSotEJu/KRYwKHiy9CouIgAG/OghvbdfDYFX4bOign1t7MKkSlWyKU3VaPR6Mwojwc7Jw+bvviY3RtZDkqwOFLndlABu5VQJX0z4aXprXPb9GOaINX0t31FbGpjdYksi8VVeHJ3U5l4tKbaivbLWVLdSGHLLSgrZJHqK4vR6FCkk3/4mxpua0NNuSwtFt/ClLvqQiaxFlsse7MST2byIUjIIOKwmLZ9pbXNdK4IgiCIQ6mrKkWj0Wj0a4Oti5Ztuu4Ykt6eqEXRLxwyrrLtXPwfrN7/wDG5sqdhur20L5tYWdae5bKGVm5344hZzRWlstNAo8sbabwuepOzL7OprKRIlpbAEHQ/jplPrikuKkCj0Wh01KOV65HZ3U4540ddGPXjyNOhVLaSBIyGwkLpUZz++vYb+NXAnLz3sr8SsdthXP1iX4lY2FqHRqPR6JyMt+Y7/zd8+cOotq8uKMLUyJdFeLSmCD34whXrboTKl13FzCa03ab/acw+GaisSMtqKnU7OXn6HtfKD8kmAABQTQ/2FQu4pNK34cgTs+FStGbD5/2+8MzdSwc8qjqSSe37+3z9mOqsCIebm+BwOBw+d868pSuO2qXKBMxtLos23TFr+tgJv+le7rAvl4AJN94+c9rYiTOXX2+3L7UyxfkCHA6HwzVnTPll5Hc/akyZ05YF+OajNwLLOmWTVBL/5AwcDodrzZz268hf56nZviI2tRH92uLizoW/acLhcDh8ls7Os6avCppoCuNeRSwyvirG8ebh9W0JNX9buPO8+St0h4Fb3wcYnF4xWWP4UJ2/H3omJbncPL5FS5p2+ubTBu4pHQam5njdP7Z00k/Dvhsy4pcpB0wC85ogiIJyv3N4ycTRP/0ydsrMzXddU6qYEARB2IjHZ3fA4XA4fMbEUT8OGzlu6kyttsu5/UGXHt/yoNvHt8DhcPicKWN+HDr7eL/YV9CKrygNNtm1ZeVc6Rf/tvyUXeibshYWr/Ny9gJqfXmJ9+2VK3U1pSlnT1p82iEyC0fvbGCpfcPz8wswoUabVi+Vpp2oc/5FfFEzT6hc640h19ctXwiHw2dPGP714AX66d3at9pp44jv/7RUXvXNtFiyeAEcDofDp/006Kvvx83Q1pb9PA97Vou6KVL0i32FHFr8IzgcDodra2lOGjXo62ETZrV99YKlq68EN/R0ADGzCW23+fsx8AthStuT+OSa6DsrJ2reTwKVXwBg4FBpX4mQWpluvk9r3cMomcxYTeV+V2dNnTnnj8fvOu5NblNx4NUV4yftvax3fPcxj0IIgiCI11Ia9miTFvyIW3lHezK5/K3ZoU72hSAIgkglccYH5e3bAbEgXP+AZi9bnhnlb2z+0VWvffl0bIzN2e3ai48aBaJbIQiCIHySzZll87bd8MmXf7QLWdXRyLObtZecRoYX0SAIgqDWgkCTY4u1t52xjsbSO1RdGXZ//7x585ctW3fmsr2sjZia53t796wV/xgEF8q1SFdH3j8w//e9j16/p7Tv4+Y8u3jT+EmCUmX+q5ZnQqTeBi3d/rAvm5j+9OSqZfuNosuJbSda5Hlso9b3G++E5jfJ+ZdPzbbZt2g+fKdFUg1Fep5N0Y/3LJ2qfco+BUsXdKRMRcyZtPjYg3v7/1z5IBhHljaHEMKv60z5cbMFqo6ueiJvg9f+sSOWqLBvme2KEf87EUBhqe7//IRbnpUiFtIq0wy2jtJc7ZjfzWHJNdF3dH/5/R/vun7JJgAAUIZK+/LJVVEm2xXLwHxKTYLdydXnfOvbd3GbigOv/jFq+p/34prlUlIrU5F/T11w/hW+fdd/zr4idlHgo0O6S46bvKnt2FkebnAIPnnTFfdsmmyfkFUdjTyxYf9523f1nY5Qm2B+cqnOgYevC9tboEmp9idX/aZ1yDi8syNrwu/vnb/4qEV0RcdfhJrjcn7N7tOWUWWcto9zst2uWbv65sn/KTr4KPYVUGMeLlm0+2FoMbFTc0CR4ybNX9caJJST2vLOp2bb7NOee8mjUCEkBdpx/dwxG43eYSntmktFzJk0cuiYc36VLfIdEYTAU7PHzLscWklREfICgqC3d8ePXqHCvql6E4Z9d/S/ZV+JSNBS+s74r9mrdnTnXmBfAEA9qLSvgIpLtNg1c7NpQmmT/LOQTyGUhLnFdgium1FXX4B9RU1pL65sXLrpqntOa6eDW1/edEjPKbn9+SVsfGt/Zu2yHXf90DSFY7TmeV7bvHTjJZe0pjYHkVLtT67afQr5pkYhKTb41i7tBZ31C1VH6v21fYeed2YTH4IgiJPjZuUVHFvejS8/in1rXp5YOPuITVplq8IbWRZLZo1ZaZBQThZBEATxS10OzJm29mE0lqTY6tkUemnehPnn/THNnDbPpSLmTBq33OhtnUJsCILv4Skaf9yMrleM+dSZnuxb7bRxxPd/exFYqttfPx/7SkQCalWmh8HhzbdV3kx8ck30naXjZp4M6OkmAgAAfUd1v6+gFZ9ms2e25pzfzrnm5eXlFWBKCcoew1+ufUko9xsbF68//zxL0SsKENOczq/R2XrDK1dRvhDUinpxccPiDdfcs1rajtqdfanp9sdXjV9y7unbWvm9OS7n1uw+I63+crLdrbyC47qT70exLz/NdIWm7j4j35iMvM54XJ47ZTRsh3VmTSsEQVCV59+a41fcjSxv6aq8ptenZ43/40pwBZEr3dHtmOcsI+1fR+x2KiGyVBmxJ/s2uO8c+b32w3QaR6Q8gZTPxL5t6jU9vr37Sm8bPFJV6HXdKYvMsvsllwAAQCk9j3lmt1QG3lmwYB5cc/qYseNnnHfNzS8sxlE6PfG+XPvWxFucWKy9725weQ8JsRGIv+fP/wcRqWwgaUWI3n74ouPmcW2P0W7tC5UGXNmuqWhfCKoOubVzy+57vrktzGw3K6/guIpubfkx7IsPvLBo2hiNKbPnzlugjJu+RQ0MCIKgTLPFv2vstMvBdS2iQFC6ofaUUXsdCxvact6tfXHu+yf/rHs/oaHLBDZ5erIvlI34ffjQA94ElkCVWD8H+4qFfGJpUoD1uZ7VC0FiWj3Kauev8AuhoOoLAAwgvZ7vK6DWpdgdXLBgnramltacHRaJ8gL+cu1bl2R7Zukfu24GFPcwwbgm1uTo4gUHHoWWdU0oLHl1e/e8padtEtuc2q19hYU+F7Zor7z0LAXf+Y3qCL2/tu+4550U7qxavh/PvroXfN7je4iYlWu9auaYrZbp1UqiSvOTHmhNHnfoBUbWI9ytfSuebZ04eqVBaqPK6KQ92hfKRvw+fP7tRCJH1fitT96+YiGfUBTreHtt51tIIhKyWxq6NPC3y/c8kC8AMKCosq9IwKM2VCs82/jUurfIXVrwefufdczGV7N9BWw2rUXpSmhqty8DHXB/l86KE7Zvu36hkEWjtbYypQ932nvfuzuWbbrwLK3r9zUn251at3zvo8AiunRHt/YlvDE7pKu73yC0SNGG0tbno/uPXHQLS6hS4cqPYV9izL0/Zyw85pyJY3S1KpNAoPHaBj03R17XnTL/kn8xoaumK133zpi6ziABJ4uB2J19efG3po8dc9SnmqTS9T3bF8o2nztu/sVoPEeFWvvNvhKJuBWXk5ubV05UukBDV3phX4lIQK5I7aJeCJLwKPg05EM/gsIHxLT6bOtd43WuRQP5AgADiir7sgjVYY8OWuQpPqb5JGy08W7N4x2DnntvXyo2xfrInMWnfOW9IuY1ZPtf26zcviRMtPGheX9eCWxvaxXUv88Oc/ZR1tbbb/blM4i40uzsImwtWXV1rTH92bW1C3dcdM9RCK8lZFYnh4VGxhe2NaLSil493LN7zzUvVCtXIWGu5+V9uw8YhpbSZeecan9y1dajZtHYTsfkUJIdj61bsPGOO0rxoQlJB1/NH7v1rne28sHObXyUUVfExMebZi0++DS5iqbgOiYhwsohEVfflpvm+Ht/Ttt1JxzdrDAJmE8OuTZ77h7zpNr2MVapiDmTFp99VdrSOboFr8h284Tp220zmpgq2yN6YV+oIejY9B922ZeT+d26td/sK+I3eWyHDfr624V3Epp75d8e7SsWsvHvfSxOd2k4kojYDflB97coRpqUCFur0swOzFnriO5NBgAAQN9RZV8+uTrKaOO0cx6F1XINVBIBF58Tanx85Z2O2UXsxiLf87pK7Xtg8rxjPh1PBx6hMPD21rlL7gc3tYWeFfNYBHQo8uyi8ZPhhyzeFCsufMapQ3ld3qazwfiN9LErYOMyk1+5BSjtaO0v+/IrYpBHtWGwqatPPMtUvboSozTS7Mj6tfsfBKA7FhXmtTaio+ye+/qnyM0uqk9zur5p5YFLLimN7QLmUvF5vo9PbDtxxy2zozmAlGp/ctW85UcMgwubZNOAOZS6NzZ/bdbROfckUXnDMjXF9pzxkx7kK8hz/nvVevXP9y1+eWLjnI23XkQXkdvXqOdTcMXBprdeorCkDtsUeR7687dNej6pVR1ROJiNxfEme3WX3POvIHYcPhUxZ9LI347YpVYy2iNm8UiVsQbr5vyhF1RH7VzI6UJv7AtBObaLps6/GNNt9ZcbfmLokCW9s6+Ek/1A66tBg/f4KenWFgu47+5P+AEGGzRk6Gr7qq4Juh6Ox8B7HOzevmIhozrD/MAvR59lK5KRFOlwYtGv2kZZnQ4oZNblelzesvIuqPgCAAOOKvsKKLg3j5d9O0Z75QmLMJSMtDdh9lf+2na0LaYGJOIxm/JD3K6tHDlJ84I7ui3UnZjPJtemB7lcXj56Kvyyd1H7WGlec1mU0TadZcuvuUuPlx4X6Ol46dTD2/t/+e2PxduPXXtV2jkbnIaCgPt7lq89jIxCoVCopJAAXxfHzksYCVjk+jIUCoV6++rptY1aM5afso1GoVCogtKqzg3UIk5rY2UBCoVCJfkhz63V0lx74WksCoVC5RdXEugdY3SaMt1vrvsRBvtm8pqzziiq6mvIKI19emPDsl2nDVzi2y5SpJv+xfv3XFI7z+yFaEXhVlfW7Th13zmoLeFrx1vHt224/iSmhC6XjpRqf3LV7z9PnL79ipFnlDRlgMmpfatnHTZ/lauk3iu9UNkvA+JSupGvgNaALc5HoWLszqycpbXhsl3AWxQKhUKV1pOZXcYmsYnYEjQKhUJFWx1dPF1r6+1nQe9QKBSqDE9ld0rMp9aVFuahUChUpPkB+CStXQ/dw5JRKBSqEEdSXJSPmGh5fKu2zjELv8gU6SlFOF7dddEhoUqh87E53vjQtvn/PPKPSmq7Ss/11m9cdeBJWn2nuUWpiIU6OvD5Cy/bhyektaUMe7R/6UpdvfD6ntwL8WKu/DpqnVkumaVySDME5dgun33UIruG3ikgNLe5NCcnG4UKujlvyNdal3zTMrJQKBQKVUOVKNFwa430r31VEwb7atCgXXYoFCo7O7vT4DKJSFDlfXzh778M+d+WF/iux+hIKBaxGjAoVGZKgtsZrf8NX3o3BIVCoVA5ee/r5H9FXGq91yFYtwz9ecoR+YZniZBVl+d5Zc/6R8C9AIAaUDnqit1SFW2969qLIPt/dDpYte2gkVxQDSahJOCO7L3VO49IK5M8UuUb60Oy3Vv+Pu9b3P4JXnNZjOVB2Xtr95+xfYetKU7ysktu6SYjFGzq86tt6XedvheiWO8llyY4XdLpyt6LCmOMWTXp3o/2KEm5+dRDn1w5yzblB1me0dHZchbhl9fDXCIpDVneRifaD7ftsmVoobJxuxAE1ae6PDranvK4oWdml9iAsn7f1yGvjc9vlSU9rcK8EARx3r8KTszoJsYGREG53zu+seuJX3SIL+myGGNF6P2zu5VcpavPU7GdiiKklCfnD6xVkvKARXRpc1cBEhMtj+9Z3Z7qtmysc1eKPI/t68juvcAKYpfF8ApcHwdhGukC9IsDOzry8LCreXnEivzc7MqWTtEny+zXjpl6LVzV6r4yGoKvzt90JaS6Va5+iw+8tGr5kq4nbpqmLMh0plnXlLpLl1lmKaQT8Sn+h4dOfqRyro+YxypxP971gCvXb7HPk0vHpzdHP1byt2ljzdZ9Lu87DipgVGc+e3Rs9wvQ5gwAqIX+WeMI0L80JVkfXbZV2YwjBThkXHlBVjGumc6ivX+bkl/SYwvxlwjObc/4Ud+uf1LUwmrTL70u3+XCH0uMoojM3sUyzrFd+7fJy7w6RrcrIn04EomIVO57beMf1qgB+w7liAXc+rywp/e2PgbVXgBAXQD7fmIIGU3VJcGmf6+aPmfbJbtgTDVBcakGeSoCb+yY+83cPbcd/XxDkwvLVXb5frEQIvRWzfrxm40PQ+LeZWZmZmZmBiA2rjv7oqBVdSCNzuTYrr3oW97tokwfiETCxqNTnl1b9Ke1+oNccCh1sdZ7gHoBAHUC7PuJQSsIMru0fYmM02b+OSpam6l5foizW5csWbJk7wP3FFDx7Zb3z3ZvWdN+VZcgYokDsXZy35GIBFW+51ZdDFTV4QsAAP5DAPsCAAAAAKBugH0BAAAAAFA3wL4AAAAAAKgbYF8AAAAAANQNsC8AAAAAAOoG2BcA+CQQi8UsFksikUhfs9nsrq8lygJpAQCAzxFgXwDg4yMUCmk0WmVlJYPBUPGawehNdG4AAPAZAOwLAHxkJBJJS0tLfX09i8Wqq6tT8RqPB/OBAYD/CMC+AMBHRiKR1NTUCIVCCIL4fD4Oh1P9GgAA/AcA9gUAAAAAQN0A+wIAAAAAoG6AfQEAAAAAUDfAvgAAAAAAqBtgXwAAAAAA1A2wLwAAAAAA6gbYFwAAAAAAdQPsCwAAAACAugH2BQAAAABA3QD7AgAAAACgboB9AQAAAABQN8C+AAAAAACoG2BfAAAAAADUDbAvAAAAAADqBtgXAAAAAAB1A+wLAAAAAIC6AfYFAAAAAEDdAPsCAAAAAKBugH0BAAAAAFA3wL4AAAAAAKgbYF8AAAAAANQNsC8AAAAAAOoG2BcAAAAAAHUD7AsAAAAAgLoB9gUAAAAAQN0A+wIAAAAAoG6AfQEAAAAAUDf/B92K3p9XZPaVAAAAAElFTkSuQmCC" alt="" width="318" height="132" />
2、shutil.copyfile(src, dst)
拷贝文件
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAfUAAABGCAIAAABaA5opAAAgAElEQVR4nO2dd1wT5//A79tl9+/Xfr/92qXVqr8uR1u1rmqtq466FRWVihpRq6KWujWXBJKwR9gj7A1hz7AhMgNhz4QNSUgYIWSQkPv9QYAAYShYFJ/36/7glXty3D13977PfZ4RqLOzk8fjlZWVIQAAAACYRUDA7wAAADArAX4HAACA2QnwOwAAAMxOgN8BAABgdgL8DgAAALMT4HcAAACYnQC/AwAAwOwE+B0AAABmJ8DvAAAAMDsBfgcAAIDZCfA7AAAAzE6A3wEAAGB2AvwOAAAAsxPgdwAAAJidAL8DAADA7AT4HQAAAGYnwO8AAAAwOwF+BwAAgNkJ8DsAAADMToDfAQAEQSRVzBLfwlpmr1yubnVLY4lvZUubvE/xT+/YC02fSNSRU14SVt3KVbdaIu4uZpVFN7T3/NM79rIA/A54sREy01NKWwXivuEfdxeUl/owGG4MVpVEWM4q9StkuDHK8wW9UrWGltSiHQzfxThcyMxJ5PdKR2wM6XL3MnzX3PtRLj2tXSabhOMFnErPQoYbg0HrUMzEI0HRK+OnMxhujELfkoYGWTejnOHGKPQpqamSTGWz8h4xN5nBcGMUB1c01Us6c8sYbozCwPI6plRd8T5xbd3jo0YGn1r54surS4QjVsuaW0pu2hstco1wqKgpHblWDTJJd2V9mRuDEVTFqpiZZ4K0ta0hmsFwY5QnNXGZ7S1JJQw3RklsPZctU5bobi7Opz+u4EypoqcL4HfAC4yQmR7shCGEFnMEMtXP2c1pmubEt2EYQns71tJ1nE3ew8IQ2uRqaUe7TM12Wisi1hvqvwbDX7oEWNWKe+QIgiDd3Bq/olqWTN7JzdhPNHgdhheRA23rpZIB+ws4Vd6FjIx2uXyUwjmVyec8rF7FYDZF5ZNrOyYR9isa6wrcGAyPSrbgKSpiOH1yaWl52Ho0GoL1PzQKDW7JOWCChmDM+0aOZi1Pv9ne3u7MguDVaDQEExdaR3iz0ncaoyEY9wnJy4Gjpry0hxeX4vo5DL9FMN4SmhbFQxAEkfeKWA1VYdXsVmkHLT/kexh+m2iyPTwjlqf8lkwqrK4vC6xklo0yvqS7LSkzdIut8X8sHbQyqpK4EzteJGzPq2K4FVcktnSKnv7QlXQL6sgxrktgGIJJB8ISTWmUH4kwBOPXBaXGdSrLcIuj3CxumvjGPw+Kf6Z+l4s62BW0IrWvZs8pQk5VYW5KUbN4pndkltBWFp/GqG7rVifVqSJkpjtjLt8NzG8ZLndEwnMKsPivPgzBhGXukYaRbnOJ+hAML3T2N6sRCtTkXwReviYf4GDI3MWM2dMvdwG32irE5j2c48WsIscI6/f1MRAMbwjPts8vcC1QLkaBVm9iMT9H5Cbx1SgeaaX9bIz9FwxDTlGp7X0KRFxawXArGPr68CX/uhMagjGvWgS4sad29Sn6ejpq7zugIRjzOs70F/84wzB7CIZfwxms9IsNUCfiyW1Wxm0t07VFQzDmbYLVbwHR94NsIRiegzfcREkObxv9BTmbU37LBg3pExZ7RSvlLhVVVD7WcbX8nBTwMJN2y9sIguH/NbM+kThUFQ60xHNkow/NbVGZahSPiPlp2SFL8DBEtNwUTa/o6esScDNKx6rVAovEyN1WMGRgtpZCS+3sfdqD7z+gnjwGda85GoL151q6nqFQjpLNIRj+wNzmdEpxbtdQQW4xxYH4p4l3Sn3X2Fv7R3hGfpd2t5Umkh3M9eGrhwmPp3XTT05vZ3NJapBPWEJBo9oneG9HY1FKEJlMJpPJpne1T2ppEKhPfRe8yIiaChLCfchKglJLmtXeEKKGvLhQ7+D08laBWm331OdEU7z7N/JIc+muO+Tsuul/mRbWhP59/ugDrxz2SLtXF0dtNsG/AZut94txKkk6YGr41nhyR7q5j4+YEObAMGQfapqdRy4oIBcUGAVZL3T00aR4LMWZLzbBvIoh/uDt85Mx7jWY+KN3sFZoqPbA8hsJeyS3SzQypYMgiIAaRnodA0Mw8WaNXK4QxCeHnVX5oupyJtRvNRGGYMyrVp6ESnURvELR217bv28DC8OzqKF5VDmZrIuW4bUAjXlD32Z/ZJJbUew6NHqqckcUEhE3OtF9Hhr7LtHhWEySXU7ESjS6X+4RauSOyHu7cgrDfoBhCG+y2Dehf58dHidf8bb+muxzyMv5/3BGnxlh3zey+MmN/DUe+74R6deAoQo54eu5y8PdoGZ03kfGbS2B3YwhGLfEJdidI+NwmS5x6mtVOzT4kIfjIgMYwpusCEgKbVHz4Ozp5mdXqtZqAaWmoUaNKOR8TplhgN1/0IT51l430pIeRHguUid3BEEQRMhKtjHSu2FJKZ/ZIP4Z+V3Uxoo3OfL7T/P/+/XamfZ7L5secP+3ue9+tfWKe6k6wYuaGFF2t7S1tbVPHtj648JFa15Gv4uaChI8CTcvoLROaWtra2vv37Du0AWsP3204kXFLhc2Lnrn4z2Y0CKuOsF30P2I9/7U1tbWPrblu7n/s0LnGfhdWBP697HdhKjKtpG3rKBKj2z6PtZsvV9aAq/RO9LpY7zhco8AS6awS/1LhCA2wuE/BtgvXQI1KaE7rQ3mYOF/23qdoIRgSnndsio9I8JbMLyIHBvc1h4Xaf8+zuxQYlFu91DAXpIfSaxol6pNwbTSUeFh2qGJMZ0TZGgUCo6JLRrCYF6nVIxe29fXU1SWZxfp/LqVh3ZoqHZoyOlg18UwZo6+6+3ComxVuShkXey8gyaYN/RtD0Xn0ztrzbxMX9c3+TVkKnJHkD5JYy1tlzH2XaKTVgIji1MOu5u8TbDYHak2ckcQRN7Oqya6Gr1FMF7lFarp773aFH4db/gVOeBSfIpHQ1tlbervaPTbRPPfo3Lj6iuJHuZzLd3vMhrqBnwu6OIkFKT5qo3IxB35penaoZEPMooKJsi5SCqqaKfM0JCF68nsUY9CuaiRzXKihh11sdroG6odGqrh5fKtEfyJreuFzBoab/impby4xyEriYT51gGY/HJqacpxW+OPrRxRGcU5aoN0ISvZ+uFFHax73kwa/hnmZwT1dMdTXz0rv8sEfDazvH4S3hA30Fyvr3//zQUbta2zO8ct2lUcbnBs3cvod36uzaXjv581oBQrYxyG04lfFi05bU6tGBlMdj4211wzb87/bPzbJ7d5/Eu3mXJj41frpt/vwprQv7dvuuCS3jjyDUKQn+a/0MJhh396kkBcVxn1q4npSo9on9aeHjXxNYIgSEtj0mFj/BxzFzOmsEeO5CTYfGSAWeCVltbRK1MgLQ0J+4j6n9h529RJxH0Iwk5bQ9B/FW16q0asLmB/esbxu0LRx6pJOmIKv2bicjK/tf8zaW+DQ7DrEhh+TR+/O75+QF2KXiknMtxpjonLHzGMEpm4MMd7Cc50WwgttXsqeyfv6W7wpDi+b+5xOam0VNyRmu7xFcFqf3RO5hjnVSrpSMkN+AFHWOwVHc1DBO1Ndn74Nw0t91LLWVJEIuZTs/xW443WBSXF8RFE2v44N3gejPvSMch9mpO54/m9p53lGGH/X5zh2qCUhE4EQRB+W51TlMu3RjBkbLs/sVglipe21uXd9HBc7BBiVNRQyau0oDgutXS7nl1dMfYdIGTFmd7U1kH7loxvnWfJM/S7uLUkUHfrs/J7R0VOnJNh2KhnstodKY13uquLtQormqCiX1q/8xMNDm8/+zAwf/D2akhzMLxz1ym+tHXUO20nI9gMfe0eOalyosjkGfmdnXhn58qNDymV3FH71haWFH81oahIKJUhSGVJol5UQhB7TLkjXY0Yb+P3rVyO0Vh8qRxBkLay0KVE/VfQJjcrhYL2hoeexLetXO8Vt/Uow3W2X3SUTliAXmKuYx6LJe+bLsmP7XeFTMazdERDGNw7nnkql6VCIq17aI6GYOw7BA+yMoTsE0sbnMMjr2XUcBFE1ivJygn/M2aKckcQRNYpYNlFxNzLqeMhiFjUlZQZ8VfimHJH5JI6Zs5xB8J/yWEG5TwEQXp72mKTyB/AuPl2/i4t4prqrCMOxIWe0V4N/ZuQtnArLMNCLkZGwGlFodXs6ZP8OH6XVlTStCzRkIHtvriSuoFP+c3Fj7yMIBj+xDnYlDko+J4KFoMQneZcxREgCI/D9EiJMaSPJ3cEQRCES3PQPXcERUpmz1QI/6L6XVSbQbHWvTUpv0+el9bvhWStrbs0jWPLpt53Q5Vn43d20PmlK44ap9R2TLHVVpCb5P2xjfug3BEEQYQFp40Jn9l6W9dyUuI9P7R218ysE8j6NS4pryp0K8h3zk87ZaX/BuxwqZIrHjfv0sWucC1vnUwPybH93iftzjuIRkMY3NuuqaUqDzS5TBIbRuhv4bxR9WRH/iyRd3ewHIOdPyKH9su9/7PSithNBoZrguL9q6utg5w/doswquQjCIIgfcIeHq0k3zk/1ygxdLMR4QuHcDv2eJ0lZZLu8oaa6MbJ9Jofx++iwrKUw0ZoCDbdHJyZPZiFFNR7xLm+B8OQledF5dvS08OlOVzT2KVpEMGcIcE/J36XCTs51cWsUR1ku9vZ1SW1I8+jTMDO9nmgdWzrZP3ew60pzI6nq29eVeF593sHi9XQ1DS9DkYQ5In9ziunpuaXtXZN1B3hmfidHYRaOm8nOqGGN0W9d+VrmNrtSK/hSFVbXTlBcTGGpbxuGTswLvpAUKR1Tq4Tne5EpzvR005Z6b+BgSEYhoj2B9ysXndKL5XKVUJ4cWlFATmfPlCejvc3f83MF1vS3D6R4sfze3v+MSIagjFz9J1IKsluuUySHGUCwZg38Zbo+qlVxTQi7y6roG628NQdlDuCIIiUy69yik/xbOjg8KpMQsNPRVIHainHKDF0sxEMwTCEJcw1t9vk5rYpukwlhO8TdLelFw/Vqk1a/Ck3m2+8qD4TK368/Ew7r8EvLex8WIxBTsXQg1PY6Ev1+AiG37Lx+buYh0wRLs2+X/A1M9Mj72n93ivkl1IdB3H19o7MK8pLqVZ5Exzyu7yHz3wcpCzq5heSzhwUuUzYVp0R6GhjSCTcxQQ1DX7cza1MD3S0JhAI9w0oAydGzK+nxzg6Olrjb536+eN3Pvtm55/GA3vgG0YtG342erjMnKj+lcb3zp/U3IuOnuhxPN1+l3CrsmJ9BnbROyqjfKyub511eYmUwer0ic2s4qo88cWtpWmR3o6O2IuPbHzjWR2szPiB6nQMSy9uVq315qKkcK+BleG0spZuBBE1MRJDPZWf+SUW1LdLEQRB+FUpUf6Ojo6Ojugz675euuaILtZKWcg/uaipY7i+eeUJ4X79ax+e+mG3ns2ws62WSfqdUxgRNLjLQTQmv0ftGNJ+umNvfb9g0R+uRc2TGBAzLtziO7F0mkjaf5gCTpUXI9+RTlddbroSVnhQ/ggLR4UPX5LK65ryr0bR84aNd+1OSou6GDFQxpP0KgYDwTBkGpM5MPC1sZbuRKeHtYyMNMbJv/f1dcYkh6PCIy5FpSUN1bhCKuWYOqAhDO5di+DwqWZgpo/eHlYN/UFaRQ2CIAgi7xUx60tG1KpFavxpF5M1PqNqNTqRmFNGq6DjMqtqh7Yoa+PXuScMlAn222FvAsEwpG+5Oayg/7+IejpyK+kepdW5HSP624zbvqoOIaecGGABwYTvvGJ9OVOXcmOShc6+ndomCU0Tl30GPI3fe4X8slhrM/RfJ1D9/HHi+J4fvv5dS3Ofvcpm+v2+ePktr1Qf84d3LqFQKBRKW1NTY7eGHnlA8dL2+izv20f3rF62ZN3VIb9LeSya560ju1Yt+3rjjUG/C5oKwy1QKBQKderQjh8XffDZih0nlbuAukO0TRkexHTW5QabolAo1Jmju9YuXvTjP+x3Cbc6i0K4ekZj397TKBQKhTp2XAt1wzg8r25EI4CEU0GLNr998ezp/f0FT+/dp3HmCj44a9Dx3VVJ7iaobcsXfrj20GWcgzte768rWv0V8fvJ89cfkNNLBhwvKI9zNjz767fzP3hv4crtt91SKvkIIiiLcSBob/762x9X7Tis5xBd2CxCEARpormaPUChUCjUoU1LPp23eM2uo38oq/O+M3Vk5r0h1d7wLgqFQp3c8f3nHy7Xnha/C1kZoX4WaJ0rl7T7//H+gyduEY0ji9hdakdEIkiD95nvPv9tGsJ3BEFaGoo9C5TSIQTZfOnkeyokrN8je2wM5mBhiGiHZ4mGN6V2ZjIK0vmTGMVaEfImDgPBxDV+uQV9ygA+Jhh+BQN/6ZsyQnmOeclHTcfsPzMahULWUhe/Ho1+FYf/KarmuRpiIpUIi6uVx2VDS/7Ty/pr16D+WtUK8FljCkNY/GK3iBC+6pdkHYKW9LKq4gkfVN0tYQmuEIz7wIR8MaOm/5ZnN5XdJ6PfMbXZHZkxvGKzcTEBaw3hyfld3t7REphE2WJBmGftDxfWT0fytz3b/ebuHfv1fApnJIB/cr/LxZzCyHu7t6BcMgdOkJjfQDXT2LFp5fe3Y4fOj7i1JFB3/cdf7P7TAPuIGMtEEARBejtqqGaa65YdtsgbCr94FUkEzWF+RxAEQdpKY/VPqPp9CA4jDH186STzM4KKeLNT6/5Zvwsaae53TuzfcvSR54AGuTT7a9tXbtaxSVEN4iXsPI+72vu3ncD505T5qe6aVC+0xpb9x2+70RqG+l7VRmFOrF66fPMeLdiMkqPsOSSoTDC7uGHLAV2nFJUovjnVGLXxuyN3vHOHbnx+stHNB4ZkWpO6JNUT5WdaIu7+tmzddPidU+hx9+SeY3pOtIaBlwVmrOHFbXM3a9km1qo3fJn9vm8+OWGV3zANQ0cqixP+io64EKFc9EvbBAPaTow0/lAfhqypj0XD0jdNdfG78biNYZmkar76PpGD9PsdbWPc2je4hX6/Q4aOx8KH/u+FiAhUeMBaQ/hfGKOfH08m56uQCuotvUz+hcUtcA31f86SiSJhR0Jm+OChXaWmeirbUZH2tjpjDzRkYPFTKKNR5StiUVsMzWejqbVGSllU67iXldLvhKVu0WEDl0C/3yEccZ6dx6kI1YoN1fByWoLH/cc+AF3ZMdYmpaKOgpoih7xMdKTvKuI0yh1R+n3dtkv2GVPO9TwNT+53Ka8mUv/3b29GDzsLMkFzpvejE9e9GwY/EreWBOr+NPebwyY57Sol26vTjE9+ueqS/9D5nXV+l3Afk68f3LBd1yaTPfRhSfBDje8W773pSR98tEnYeR73jv926jY5d3gIxs60u7FjwwFdZ9pgnqYtjXRu8/cbdKwSh/cKbaHiT65fdRQTVDQkZ0G53529B/544EvnKyXJT7Z7YOMeVqp6KoaYEb8LmZ6XV20+YxpfPTwTxPTQ/H7+Wr2QErY6wTMst38199j0+H0clH438bz9ONs2L89+YLlONljuEXLW03qOY1qJVDZe/5lx/G6bUjm8rEIhiE+JuBiRmjhxpkUhl7XFUr0WYrDzySGWNc9PamZilH7HGS5wCSWq1KppcuxJF9N1ngF73N02RZeO9zoyjt8JNjvjyobPvyBjc2rI1BiD7PLiseNncVdrdC5VJyJCJ9hnk43Nd2TKo4KyhOmYz+AF9LusqyHDWvPbNRdJgXRVX8oE/DpadPbQS9cY7asvgd8ldVRL1LaNB+76qr5uCmsfB1jd0XcOYwxuXMKMMtT69ZdjGMqogdjdJf73Dm3cdt6CWqcUfFsa6dzmQ+eN41kjirLC7h9ZuWy44JHmVKPzB3frWsczuxEEQfgpdhZelCTWGJfsjPi9knxi5Q/apMfMkabONFz/zdwVYwi+wfvMd5/vN0hjtY+TpH9CJOVVha70Id3Y5+XdcCW8g4MhGF7iFqIdHqETMbS4NkqlrYU3oun0MSabVPIkfp80CrmcF58Z9jMGu8InxuK5lntfj4hPKx5Wq2Yp8YetYQiG3zY0Xes7rFZvp2YmtArKKun6mdW142z1yfz+hIh46cWJ+1xtPjEwX0XJiGqbereA9mz3m7u37LnuQZ9qc9FT8RT5d1k3t8jv7tGdqz/bq2dnZ2fn6jNc9AO8vH5vzXC4tm317iuuuRPcfs1JFhd+WXPgb5+C0Se/O8/t2p7VW6/Ypyv3eky/d2c5nN+2YP1Fq6Q6lU8F5X53fh8I4fkp9hZelOTasSKSmfC7MAH98zfLf9G+R7CyG86tg19+/D603/QxS80rNT9cd/kX36K8SlumpU+OgFPlUZB2ytp8o1/IuYjIi5HKZa8y/25PrBWpH8rUWUfOp9vlluQLx7D89PtdIe/rl7vx5pDY5y0to4q8V8SsYxgmRewjWW0LHqpV7SDftWYwhMUvcYsI5av7pkzU2Fxhl5vvW17HUpufe6Z+RxAEEZWWp54wN4CM7I8mVzRNbcYaBGlNtb28d7cWIXZmejg9Zf8ZcUdzquOlSxfOnNi1Yv5H8/bq2Tp5+CVVDbvfX16/s+IMz65ZcfR28ERNZVXh8MmVK0/BEdVqVlZS7mp8/5P2QMvF2H5Hyvyu7Vs60u8I0hILa+w5qOuc0dSabG85nt5nxO+NgZd/WrRg6dajp1GX1GGXwGpTt8NM1yPffLoHP00BPK82+05c9KXIlIg2iUQlnT5W/r2rtdyFnmebm2sb5fIWDguhTfZTM+N56uYXm2a/K2TCRr/MsI1Y64MxGSnPc+COIL1iQX5R0qXImPtpBbkq536s/LtMIqyoLbLNzbWlJV31JkGw/lxL8s28qqLRh/nM/Y6IuJXGQSQINljqFevHmZrgu+get07sOXw/YNTkyP8MU+v/LuvmFAbrX7p04cyJ/b8s3XTVTlXxL6/fm1KtL29euVfXs2CCNvMGqvHZDasP3w0oHj38QczwvrFv1S+XSMnKWhnT76I8F53ffth23Zk24tpuSTE6f3CXrrUf2WR8vc+c39dd9syfcFjCCJiuh79Z/YddVqPa2cKmBzElyPh/cTBk4vk3LcsmN9d2YMH6W33h7H8uPOJSZOTg4t4s653A7+Ki0ly7XKZN0Ph+V/S1M+3zSotGXjgKubDRN8F7sZHLmZjCMpXivd1NlLz8iNGjjJ9H+ricqkdOaAhnuMA5BK9Sq5apVJSnzTJ3imqt3kvPThrdXDTM7/LOLnZSIcM2NRk1vt+l3VUNVYFVjfVDupa3d7RQC3Ntc4siarnD3iU6WPaRjhAMz3UMNKqa0oO0i+45o3p/cr/3CrtYWSMnJZEJOHRPvf3b1u4xzBqsj3/Y7z1tbfUlJeomO/rH/d5THPTo6Nr1WsT4xlHrJOy6urpa5e0oLKPAx37Zc8EyefQhNlGNzuz89RQholLpxjH93hCNOfbTOk2DiLKRohRU+N3Ze+Dg5qNXnKNozeNodCb83pFm8Pt332uYJFarmZKdnZ9f39U1xqA/ZqD2z2v3myWwRvZ2flIEnEq3/DybnJxRS7ImCf8mBoaI9ofCwi9GRV1WWQwr2sVyBYIgjbV0x5Im7lg/6jTkd2FBSbKGmdGGQDp+fL8rFG15nq9i7S2HtTAq5MJGX6r3YmMX7YxhXSEVfb0NxUGLDYjH85/GHzKxoDzext7FfXrHLct7RTV1RepqNQufEPKLEQxhCf+1dtcaXqs3k2kBTSIEQcSirryqQkodT/0hDfk90rOx2T8xeI+t6+GgqJPj+r23neUYTl7pnRAzeKDyrsyCmC1ENASb/hL8OEslTJe2VZmH2EAw/AU5xKZuKgNPu+iet88e1jQIr5khvT+533vYzDBY40bcyGqU8WqoRieWag91oJm83ztrMqy0f1x90lX1opcJmEm2WhvU+729NM7w1JpfLngPJjZ6mPkZ/vaUhlFFp9HvgqailGBra9+otCq1ucNBeAXejw5u2KVtnjBiRlIJOy82KCA8bWCAl5AVbfTHkT1nzKNH9IoXtyRanj2igbKgDqqxLY10bvNvmriw8mGXXHt1IO7Qhg0auMAiNTvVkmp8fuMPJ+GAAvUdZ5TMSPtqR76V5opVu+CwUu6Im6g1n2zullbPHuuJ1J5jtH/x9ht+dLZoCiF8Z715iN1iZz/t8Mg/o6JGLPttDeZg1eRnVKGGEd6xS6SP1YtG6XeTgwmJh80w33mmUgWK6HHzMwpFX1mK7atYc3jo5lD09fHiqN6LsDaHaczh2u+TdNWZepo87fwEMkFrBmYV9No7/16r4z1thpdLmmrzLnlZf+tOGV2r54L91pvBo/MzqrSxa/R9LH+OKFI/Ikjpd/1PSc6HKQE7rK01E0upNRPkZwScKtMA0jLP6KDBe6S3LSGTsgKNhnDmW8Oy6UP3qYRZnYmyJUD6xhtDM1Kn0EtLwslwvHtG56ZD1sy1lDyx36U8ZiR6y6f7H3irBvFyUUdphNWfRw8a5w56RNhY4Hr2e7V+15j//TGXoeR0L7csAnNk2Y86lgxld0KZgF2eZHtXZ+vXcxdvQVkGRBQOryJpCz3gzqF1m//yqxUiCIL0tJUnhzt7xqrT+7T5XVAcjNP4EoI+WXOcGKO2G/kgPfXpDtcP7dh51jSyeFDxnXV5Ya4YK79I1YPhFgUTtPYcPvbIN3dQ8R2szGA86tSxmybhpUMvJG1ppHObly7bfsYsqqBRedm1V6eT9Tbv2H7gkc8Ysy8IHtvctiRPoPeeTKvjG7f+8/3faxP0z27YqnXLMqayTagM4rurk/1JOGxoQcN4v8bAjLm2Z8NBy8TaKYTwbaUPqbHEsrYudUOVxsq/q0INI7xjFpUskY3XvgrDEAxDVl6eLX2KifLvCkVfZozJK1jcsYF5bxUKeXVl6Do0/DrO+UpOjrXqkp1lGu/5BRp+E28JP03rXa+gNRG36iMImvPveYddap9iC2q32lPHzL6ZmObdqOacj5V/V6WNXaPvab42KE/9M0vpdxiCYQhvvDo4Na1j4vw7r6UM50Wc7xxgNTgBMSJiMTN1bDzveYQAAAcaSURBVI0hA7Nfw7OUjQTyHlZzITqIvAhN+MIx1KSa+/RPPQkn38fwyoXbZlTmTAXvyFP4XdZel0rY9d7ibRo6N7GkAcxNDG9fvqJnGKdsC5R2sRlBsN7h5e/NXbDvjruy6VUm5FWlOj+6fmDZ+58sPvDIh5Kv1Hlvez3N+drhnWsP6fVvz9rKlOSEx1rgzn2/68yVB0Yjx6YikraaOIs/923fpmNAIpFI1haWHr5hxcMetj2cqsehJBKJZPLwyqHVC+ct230JTyKRSJ4hI2YykPJr6XEeJBKJZHxPZ++PCxf8uO8KgUQikVyCYlWt2U73ebDvEwh6++vdNzwKJ3BbT31OiL3u6TPnr94gKivJGH/3tpltZNGIZ4eQRQuwvnLp8o2HaGXBhw+uXb50zY4yXIttaaRzm3/4dsOO83fuE4z7Sz44e+LEsQOwX0rlWC8U/BSvQGrqGHrvqc+NDnAmkfCX9yyfv3DVgcsPTEgkEokUQqscPcNTW0lMsAeJRCIZ6Oz45tOFazV00aYkEokUlj2iHVTIzKB4O5JIJJL++V8XzV244ZQe1oxEIpG8k8s5I37JqSPf31jvwPYj1x7pm/UfEg5767phkJp550fAjLl/4pyOXWx551Ri+DGZhN/FgX74tzHuTh29ane1PtNlDhYDwTBk6KRJb+lvgH0cbfQKBoZMKHHqnsZ9fTxLB/S/MJglvskpHQiCIHJ5b2gAWqkz9Qv2HYKPz1MpRC7uqgyBtbau+OiL80Hjv5FOE5Pwe19LS9kdB8PlbglJ6h7dovY651BLCIYhHHGea4QFqwNBEF5rpYEXHtI33xSSXajmW9LK6swzFuh3TW01U0qHuiKL+JmlaZrezj87OJ+mZpOys0k06gVvu3nGlut9qLbFDVNoqpVw8n2s9K5i7dJn0u5P074q6WzOCkTbRqeFEK4O8dcDA6+h0B0R8eqSnQbW6aGJvvQOBEF6O5vzAvEDH9/HWyYOdfjoba/P9jcYWHcLZx7EaGqtLYgPZow1p6+gqSjKRlkebeaUPvJ66aqnh5OujgZL8sgc9uonbimJd8WoKXnP1HVYSwO/Ks3f7OrV++YeSZNrduGVxXuZDG7ugbV/xqgp1JRwiyLdDAdLGnvGlY5qSRjIv1PiU7wt7w8UNfMd2+0IgvBzKFFpWWOMakIEZbHOxndHH7hV6KhZFBCkMcPFHFZTSzZRRcOnPOsspFjq31JTUt8vWznzzTA68v2NYb3BUo6JrMn1O27P9fzz7GliTBHvGRhe6XfjAH++RP1Pcour/yIZvAGb7I0rr5CpmSi4vNDvByzmX7DhhtjKloEUPbfY/zMMDKFNDyZmW2WPXCyzwtah0RAMv4LFHS8QIQii6JMX5kdfjR5nidWjFk9qTgN19HVzGDaan++0V9eDa/oZGN9kvNwnLVdtZruvp6wyZa8hbq6F572CltGv0YKuJvcYh/kw7t9Wnn8VtPZfpZKuRp9Yp/+F9T+zdtdJHV2xqX+FuP0fDEMwPN85UCWERxCkt4Vd45o0rErv0fKpIzOGT0ZXfbq/5TWCjX/hTPdhBb+v/cLQGIs/te43df0jR8CvTInwsgpKKWriNOSk0PIrxmtZfbFhxhIxBvfcUqqnPYivzPP+Do99BW28OybDNEuNi62S/L7GYV+BYQjt7typNoTnBMTGXItKS+hSDNm/u8Z8PFkPLDH/yNglmbg9P+T2aS2U2g66z4AeQatftM2HMO4/5k5nU9TV6uPkv4KcPoZhCDZa7paYrCYYlzRxKm2i4vFZKr2MZMKq2gLcJCr2TkZezBR/3nYiuurpkS73CPbkGQ7dEQQBfn8xEDUXJlLwZ7es+HTBugOX0QEJ447OZ4XePfzD219u1LiGM/ekFrLGTb2/8DBjiU7xJdP/C97CWoeE+BsxMdcmXKLT4jvV9X9/vumT9jTSvIwfPbyqfvjFs0EubmoqxkdHT6JW4/UzSwpfwMiEV54QGe77PMgdAX5/MRAy032tH+oOYOabXDFOTqa7KsnD4oGurq4ulhxbOHuDd8BUkIu7quNsHg3NEgiYhQC/AwAAwOwE+B0AAABmJ8DvAAAAMDsBfgcAAIDZCfA7AAAAzE6A3wGAl5G+vj4EQXp7e/l8/vh/A15cgN8BgJeOvr4+Ho8nFos5HE5DQwOfzx/r7171ky8AXgyA3wGAlw65XN7a2trU1MTlckUikdq/e3p6Wltb2Wz2xJsDPK8AvwMALyNSqZTD4cjl8tF/c7nc/r8lEgmXO96PXQOec4DfAQAAYHYC/A4AAACzE+B3AAAAmJ0AvwMAAMDsBPgdAAAAZifA7wAAADA7AX4HAACA2QnwOwAAAMxOgN8BAABgdgL8DgAAALMT4HcAAACYnQC/AwAAwOwE+B0AAABmJ8DvAAAAMDsBfgcAAIDZyf8Dy6t0IjFsRNcAAAAASUVORK5CYII=" alt="" width="316" height="44" />
3、shutil.copymode(src, dst)
仅拷贝权限。内容、组、用户均不变
- def copymode(src, dst):
- """Copy mode bits from src to dst"""
- if hasattr(os, 'chmod'):
- st = os.stat(src)
- mode = stat.S_IMODE(st.st_mode)
- os.chmod(dst, mode)
4、shutil.copystat(src, dst)
拷贝状态的信息,包括:mode bits, atime, mtime, flags(要求拷贝的文件必须存在)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgcAAAAmCAIAAADfrK/WAAAgAElEQVR4nO2dd1xTV//Hb6ttn9pln7ZPbatPW22t1oFiVBQVUavWvXcdta7aVm1t685NAoSw9yaELXvIXjLCkE1YYQTITiBkkEEGyf39ASGDMBRs/T3N53X/0HvPvbn3cO55n+845wKQUUYZZZRRRqkF/N03YJRRRhll1AskIxWMMsooo4zSyEgFo4wyyiijNDJSwSijjDLKKI2MVDDqHyxa6cHIsE24vNx+uXxSF+LHPQr5uZarVOnuJhdswiXF8CZ+HZVCwYlIDPk2vLjS0GGFXJqXH7Y3vZExmZv9H5GcQmtAx8TcKGhuN3S4h9XulZ0Mr6Fw/+ob+38vIxWMetHFyrJBxFTT+Hr9NiMoIXo3DmeJy0nhsxJyYvaF4ixx8QE0kVA54Uu3pcyytQJAu68D43AsqVQ1/hmjqNvVB/muq99GHO6qNhuaYwHQ5gt/3CZcUix/ApdRKfu7y3Zag9OQDrCwCA+q3mGlWNJy3Q58xdbNIuKhN2386w3IxNXlCZY43M6ouAD60z3S6JIxe+rv4XCWuMjTKRWF3A73OJwlLux4clGecDKXlZCo1X/gcJa46B9zax4zm+1icZa48O8zn5SIDBWX9xZWJMFQqJn2bnvTC1M5eodF1Q25uzA2H7h4HcvEZ/aO//NCTkdQTrQlDncu50ne30MSXkFF7nkczhKX7NjYllFfdC0SZ4mLvl9FapMOlejMdXHDBhW2G6yRKZORCka90GJnoe+4h2XVsyVync6+riJylR1qOggC8HA/QuZad8wrCBAArc/WcHsmPuwfogK4Nbu9UaycOE1GSB7/EDkNAQIuiQlcmQYuzbEACAIguLuATp3AXQ0MyPMznd8GwelW1ofw5FYxBEGQckBOrEreEVFcMSBtKA+dBYKvWtseK6a0S9RnyfvrKxO+jYz2HcEJlXKAy26PyAychrL6NCDqVPn4ZBCLuInZOMvQqDOPW9iGCoj62GGPXN8HQQDELPBI8KyKn20FAiDiY88QtwmAajTxers8453/DYIA6Lg6MAlTHPWRFQiAyHmBsVimgfIcVgsm0u51EPzYO/h+fTdDCkEQJOZSHz5O/62ISOB2+D7ymQmCc3zDEI09TJn65nu7QvOiz2SVZI/ghEIq6mgv+znc/Q2M06KoHPf28clApxBsk3GWD9OdmpiCZ3/0IZFJxVcC7d4EQQDuczEt9Yd4v5lIEABRG1MqCtVDChGrJSvg+n23gOcKhklSQdbbWZdkH94wNTfzl6ibkBLmA4ZXGu3KF1/sLPTRM3/4l3YKdJEA9RFv+ju8jQQBuNOJoqJbWI9/o5AACFpm1BVzFfKJD/nVVPiuVtQ3MKlbzYhHTkeAgFd+s0rr5+k5i+BwAAQvNQ/+XzXQlb8Rh9sUnGzIdFDJ5O037eAAEvVmRHGbBIIGkVAZt8LZZhrSaXlQ3AmsFQCCLyNRc7xxG3FDmwU2cLmz9TQkaj7WABgglZzDqjnlBAcQqPe9wwPoSqGI5hcfNHy63rY+wO9LDAggUP92D4G39OlfbUDS3pq/1RYOgFYfugT+UpR3xsUWAMF3nb1+rmJS+p+1+uR91YTMDWg4AFp/5h1yLTfjkDMaAMFZHtjbBDZdOvIEMaE5fx8aDth77cxrZsggCILEXGp4ZvA8O/S79r6WONx6TxQAgjNsHRb4aZ5unZ/n53aoGRjH7SklWSMNCAU/vzxlPQYErDHrE4vyuNLW9sq7UaPW1Wov11k2IICyXRqVF8d85oeHIAiCJIywjLAF1iAAYsxjk39LiFyFsQZAcFF4WkCngKfQFBSxy6Nsf7Dyiqs1CO2p0DNTQcRsirlrsX4NbOPmzeiSqbylZ5CYXBFtdXLPhdtBZQZNRVFnSTjiuIWFhYWFhdmy+abbjqCzn1uVGjVFYmXBt/+IjC+nSPSZkJEZtACNfBkecLO2La86EWZvMx0EN2UQirnyp0ACBEGsQguM9fSnoALFNTRkU1CQxYhtiT34EggC1i4rtff7ubwNggAIfuQ5tGeDpz0Agi+B6K8CCp/oXlqlVLRWhs0CQQCBmObgNVQei13pZrcypSajJXc73Oota8TrNl5XK55874yYYePzW11XftfQltXShAy3P141csyqUki5xXmBAIh8zwnnyVYpFJIOmuZE3Y2URCg85gQHbBzmJ1Y2CxW6lxrgctvtQhzeANFzPBK924jB2dj3J48ESM5g1t/D2s8A7RYGpAa0ENxS/N4dQkK3ISRAEh4Zm+o7EwQBK/R/3HwH62qdn5dpAO5cYYVXTswqBOp1lM2CwIdXM5I22dksxCY4NGkeM7o08+fEWGeSZMSFlUJmA/KhOwCi18TkZwmUQhG3gTpaXRF9sqPNMCDgEvR9aTuj30ADonbVoBJ12smlgroyA2aFpK4u+7A7+lW4266U0tiGwovBrm8YQsJgdfEI4dY//Aj6Pi+D4ZmpoOjvoz156PPT+v8sMPu7qSDuKPC9Yvr6K7PXnHAsNISFAXEvpbm8oKCgIA2HvrBp+WojFV54sbIebNt7BVdJFeq/bYySbZ52r4IBN+s6O3ob/sC6vIN0PoVvKOc/jZUwKE7pLoz1K4apwE9IDd2CC9oQX9UiH1BjSdJOJhd2dRWM2OxDhzxIoZ1a+2uTBm2FPYU6hR93FOxBOJyq07YXVHI56Z6T1XSU9cGirjxSGzIIPg1lvTKlrpBMIQj6RZK603D4q9a2J0qYNImwtiBoGhJjEpyepO5ilMqB7h5qQ58hR5VqoF/ILugil9DYTP0uRk+Knt7mm25wwNbFJLtD/6BMQKhO+MQKPccjKYhKr2nN3+mAnuUaYt3CpBjquycqCedxSfQsK7uFAemRNGoRIXOzne3nPlFO7UN+oRESN7YUHrFDfeId/HtlV3z54+Ne4DtugecKm0oY7C5xb2lt+kY4fI5PhE1zL41JdIz1fgvjeTSrukI8dL60X0ju7aZIDA0EFBIah1HQRa3tEfDHGSiIy6szdjrAAc+oOw3d+gf7WSml6Ts9nNdHJtrWdRV0dYXnJ2x2Ad+yd1kcWxBK1iUDrxWd4D8T6bYzpbyA1R6UFfG1jf26uNxoet8IJEAQBEFyHiEM/t2Fe555z4ULk/Igiel1YZfNnhcVJPS2uuwEvH4UyYAGOHWJyL2z31m07beoNtmYRQX1ydZH1xipMKY4xYk5da20kSOpSag7LzK9kdoz0c6DlQXftng/IruJo2cnQIygCJ8PXWPs6skU+UB1CW6Rrct3+BaCSKEwhISasug9oUEbgkbZ/Fz/jUS8BIIfugeYY/WO+n2BRrwMgoC1s2lcZYtiYGziGPYgdRes0fEgDUmlErd2kWu14udKpSI/130WAjUjvLhdAg0oZMUZzi8hkLM8ExP4kELRn53j/jHKZk16A0kCQSoFv6dkKxycYet6v3OCNTpBjUEFGZNdc83DbW5wbgqTR+czcfHOc11DbVp6uschzdiSdJDLzrt7LntYmM0WUHo6XKKcv/aJdiX1cka5bG93u2O040x7r515zUwZxGO12Ebav2Lt/E1SWZkY6mER0Q8dP3PD/lRBYckgSMHJeZKwDI5cFJrycIrf+bGoQCOVXg1Ev2bre7aI2CmHIAiSiHlZxfGbXEDAxv7bjCoti4GXX5y80S3oRE5dlUDS0lpwzs9lU2x+AnOsvAk5r9DtwoGf74VXPYeObFJU6Gc2xFzb/Lyo0FNfnOjyIGkimRMDEh6NWFFa3Ujmjg0FIxUmonosiE0vaptUQom+qt2u+xUQJkoagt9u03WnA8tGGgpQP5lBK6FzuQqlCoL4XPoTCr1TYhgJEATxubRSCrmQbGCLSvOdaY0cjAYDIAgE5Sa3dxgoSUiBYZLSpYoxB448Pyxy2oSpoC+Vsp+U+7U96vXw4mLOYDxB0d32aCEcfM3a8Xa7gt+avcDB6p3IknrBIEhUAwMiIrkzp63yQXjwjsiSqrGr8yk0BhWUUpmgiUKr6hFKIUihkNLYlHLGJJEAQdCAWMJroNDresUyCJLLJGQWpYrF5YxW3eLuTHzMHDevTdkNzX0yCIIGRIyEvNDZcMQCXFIoiZVcEPWJu8/ux83kIVNAIRBy68it0eW5l0NifsMTSZO8X61bGZ0K/NzixPXWIID0OVtI7FTvldBrfg13AUDwrYBHbqRhLMh7eN1VVHanSKqAILGI20SnNfLGTaUTl3md23/wB9fsqTcXXlwqcJsy/eGH/pgQFSYuIxXGV0vY+Uto//wppUKj776TmNjaCVKB4PHNV+aXQmrookmkBY0jmpOf41uIISQscHaebhfmzzSUnCoX1FM4HKVqTFuh29UHOc01KZTOE2vvlvNru7oKyeS2sZ5bpVCQrD0c/hWOH0ICBEGQUiysOoa0WpVGaOS1ITyd3o4sKe0dPKqSSlm4eOx6LHZtgPen1ojpNu6WJWNl/yhk4qqKRwezmgzl8uiXHcuD9PdLTGzDn/IJsMyqH0QCBEGQkldck7rDNeDH8qY8QsExX+y23MYW4eBRWQe5FozCrscGmHo6f4Cyetc3Ft4yVpqqsIfkX5hrVUebwCSTMaggr6vL3u8KAqDTrvTqyuGIS1+7a2LAByAIeMfbECfgBRn758u8zu3YfdYxvWWqsfCXUUHKJjdkRD3WN7T6mR2EzJiCHr3dEnpdzL3tJus2T5QKnKascM8/A0vHy0t+0anQ9fhxaXn53zhHiVPse3HbXNhl9ymkQnee41Hzj1b9GjFBKhDct341a49DaRfvuUGB0RC/2Bb1stpQOJScvMwKMzethavvsJqg5HQmBc/gj/Z4KhU3Mj5wHRa7ISi/TP/YQD8pdTYq3IWjfbZKqRS1USj1ArlSKWoitdvEeKzDYtdhseuwgWsDvP9rDQIgCCCtZ3oleueGve+Zq2UuKMUSun9coLo81jzAf7GTzWv2PrvGB8OLTQUxMzk/YUNobnKftk9goE/EbWZ0kyXSPhE3r7r4l0hv9bMHmHo4f4ACARAE0O6WYTEXY6P3ZtRrmQvS9o6quw81dWXm4z7HHvMf7xj4+GAYy4PUL+a3MMhFZFoDV9g33KZ6mxGx3q+C4IdBqf6dk36/xE8GsZAx1VgYnQri7vb4u+bD2rxv38/+D/2ts1iaIhoqyDjtuc7fDRX95vB5+9zhTlfKbsl0PGm+BrZ+x/6bsTTNuY2pdifNzWDrdx2+Ha/u+nmk4sBfzc3NzVYsmffh69NnzPxk4Ur1HRy6fCehRecWOc053r8MHlxpMt/Ecjc8bbxGP9VU6GvO8Pj9gPoW912zTySMMluJUuQPPzdcnQduuqc1aUWc+LVxtj/vNTc3/erAn15ZHV15brdPq8tesouu1HouXmUE4vJu9cErTgk1LAjiVoQ+uLhraN+RByHFHboNpT0V9csxzV/zKAJ5/8HDonLy8Mi2Nen+j4fNzc1XLpw9843pr/9n7mJTM3XpGwGFbfqJvD0FbldPbDPX0s3g8k7dZ2+M/On0HnNzc9hXs97817QZH81ftnKNuvSfkfW0EWmPg2LFXlny32VXo5tZUxrZ0BbVyc/pLQQIODsvQCCmg+B3FUzPCMxbDm7wln7JBLhAq0uyDMKaBwZOePP5zBoEQPAlhMPxWr3eRqUUc0qovbyh/yhaq+L0Tl8b4L/ECX20mIKn6G3UJyx+n4hTRuNqVb1qYKCfzFCX6WiJyQoEQBBAoD/xyimFIAiC+iX8pKxAy/DoB816CTEvNhUGZD08DqGnb7Bxi3nUqLyHenW10st9dVDYneoRdUVjEXt5VC6nsVeoZc8pRWJ+M11dprH0RoQ7AIIA0vNgZn0bBEEQxKA22CYG7kkpjKXrtccxo82GRGkpPOtnBYBu+7Jra6STH/LQ0pCH1x/6Nahkah0qo1BB3E2KB7fv+dElDj+ozPjgW1vfmbNszXqHCk2xQSp8/uVFlNOVfQeRoXg8Ho/PSwyzPbPF8pQaDEqpqJuUH+F2+dsv1/ysoYJSKmS354U5Xdi+YP2NYSrIxVxKIx6Px+Mf4WzPbZkLO2mbNHQL+EpCM1O3q5MJe7oa8Hg8PivC+edty0z/Yir0NWd43ti6ds/Zu16peDwej49y++PcroN3/IsoI37U6cZ2i8M/Wvul4fF4PD7V++65PWu/ue6e3jTUM8oFjLb6WKsTFl+Ybdq558jPP/zp/jADj8fj8Snu987u33DWPkZNBjmf1kKIAvev/ezjjedtEghMgRSC5DwasS7y/u4D5y5iQgqIVK5Y45dtT7W6duUKGBCXNVSTuFt7ti1///1DVjGaUJWIRSRU4vF4PB77+8Ylq3fccH+Yra75BnKvSCu1pafQ/acTltsu24Qk5KiL4BOtL+3a/p1NWjNLE1Duo9fXlOPxeDze7+qyubCDIC4xV12+id7XP4pHmhJ+dtHsw/bPz1SoKglaaIN8Ge58vuDRBhurwRwkSlvGOjTqo5An9VLFuL/bL2CV6HfQFDyF4hiKeBkEAdekCDJZ5xC57idXOAAiprk9ShPopwkplQMFeWoABAaYumJgqYTBEws62lE4OICwessnHa/TKQ2IJK2Y0JHzn0dILuqojABA5Dt2gXAibxACIiHHLxz+MtLqfVdf3V41YJWvxydW4AtKBQjidHf4pAzdrZmP5zL/oHNFzYN1lVjx+IQXCNi4bU2rbtaJLwoJLSWY9KL0cX023Ha3ZF8ARJuEZoTTRYP13dlacsEH/irafq6nv25d+Zu4Ob6LAidGhX5CU/GlAKf3rVy/ffTksUAyudkNg2LnYI6vsThhm9I0tcaCISrI+eTHPmfMruBau9Vv+IBURC6NtL1gueRKrMZY6Gc2xFwzfffTtZf88moIQ0M/pYxZk3Brz/yNt9I0HS+HmIc+oUMFCIIgqKcxw+q4NhU0YtcmwY8tnqAHqY+Y5XRqzV9LBXpZ0O29FgfPO6S1MwWD/Vt/ffS9Q7CFB+481DYYBPXxiBNHjl51y+pg9w0WVPSxSOmOFw5Z7LkVVKZ5QEauw5l1n3/57SX7hHJyj2iwrFzAyHY5uWPNnruhWhaDuDX6/t6Vh64HFmtOJ8X99sDBI7VZrBOo6y3zOH/9lmN8LW84EU/Ebi3w/N78wK8eeW06bnAIgiCo2ueg+fazY3iQ6nwPmX023fJeYi1L033KOKn3N6zY/Xt0raFswjL7DYu3/DRBD1KFw/r5/znsVk2Z/HRRQ6KWbHS3mY4AF8RV15OLvh3OTO3vC4myfRPtuDS7lf+MfiQoPQ7xMgIEvPKJulEIlYrt4AUHQMQ0n8K2EWepVKpeDqWYMrSVUKmNQw0Fksv7o6PgANL6ncBi7TCpXCZJz3T9EIn82Cd0d/GYZBiiAuo9pzCs2sE6SAUAZfsxNiuOovnpYkpnWkPRCSfk+y6htpPKNn1eksvEZLbmhsuZmgRTOrnu9wA4YOuzL5eo5dGAuplNqEiHD9H2X4ano8f25g9RAbM+ruixuvkPUgGw9d6VVpamU1dtATkxazG2sJiCR72jzlwXMJsc08LXBvotcXWYiXT99tGT/KlBAjREhTWHUaM6KJ5Rhqgg47SnIHYs+CFap4tVygXt5fFW98M1A+F+ZkPMtQ1zTW8m9WijmdtWaH9yLuxKlKax/s9Roa85yer4Jovj6OQOTUcnqAr/Y8+8JYdvxTYOD4MF9fGIE1u2XXLO6NJtCpKOR5iTGzcdRyWo7QWop9D9/MZvDj2IIYh0htGSSv9L20y23PAv1jyenI/3PL374HmXLHXvTYpzdA2LKWHoZWGxMpD7z9x0ytT1Pcp5tViHgNQS4kgvzrhUEDGbCVUlTVSeWOdVKHf5Zvk3l3FaXimNnooKbYFHvv745HOiAtUT6/42EgEE5eaxxYoenfkK/M5McxvUNIzb6XKWaJxMVMN6NiqMoSEqgIhpaOflAQFr1Ntqf7/FzpgTeFJKXth7nrkGl9JTX2IMKtjNjajo0r1ThULSxaRWMjmTTi76qzVEBaT1vx09YFp1tcLTdTUu4j6+/HZc9O50wlg5SGNQwS7wfAlJN/6pFIp4zXR6o3bkYIQUUmFHN72ESi2pLzwb7PWBs/vy8HRXImsqGvdfSQWVhFX/8OqS9013ngqs1dqvlEtF3TQtAIwSbf4HUKGvPhY8sn7jaftMita7oxB2dzVXE9oo3GEACGrC/9y7bssF9zy6/kumoGY5nLFcf+hBLGGoa+4pdD+/8cAP9ln6pjsjC31izWdbbgRoYQGStEbfO7Lx9N2wChYEQRApztE3KrGiWz+jT06KvXXQ0mTBOec0HTNXzmNzBEIDE3mqfQ6abzvnMcFoc1PU9TN7zMzMzMwWf/rOG8umggqU8LOLZlveTm/rGSfN+OlVWYz9Go182TnOl8brV6r0Z7EphDkZvm9bId509IK3Svuf3mCYHBVUCkVPSKy/WUDA8Lba3+9LDAiA4KvW6OMl1FKqZntCZ5AlSrmot4LBG6uLeToq/H+RjEwlICJ16srU0+1jGxAAwTm+YfdqdeqqtofbLZGyeb3NXJGB5jmsp6PCU0ohoXCImATcfCT6o9DMwK7J9+TsHMzxNXsue+Z1TG65Fn0ZjCuoFP285pyw29/OmL3IzMzMbNvB09g6A+X+uVQg5zpfXGe6/7eH9eMMqDrSbc6shh29F988sqCiIer3A6bmF5xyyIM7RqWCvC7kxx0L1l52y9N+heV8vMfpXQfOO2e1CSFSnJNBKECQnEdrSUDs2LRq3mJTMzMzs6vu6Y1jte5xbQUIgqCm6Btn95qZmZktPv6Hf2x6aWlpKfb6qvkWU0EFWd795XNnH/ero07pjAmI3pC2ztV6OhgEJ7GHMk1HzG2W9nV7PUS/gQI/cPNbld0mHD/EoKNnpoJKOdBWGbva33ueredvDZruDN9JssbBAYTV2z4ZxQb9DgMyTku2WQB2c1haosF+5n+OCmIeLSo3wsTD0zwozpGoqatHlfknveCAjdu2tBqiwQGFkJFUnGTmH/pDTnW5QTg8VypAEATJO5sLT/nYAtbux/IamibrSCJGXdu97fCDmOoJLAn7NBo1B2lAJma1lpUVZcTYn1zw2ozZX6/euPsYKkPbX/cPpkJHJub71SaH/4wjjlOwNRk8uWLFKfCRob6gJf72kWWrztlmDBm1o1IBanr4y57F+lSAIEm597kdu0/bpxPrRoUCBEEQJO4mNdeWlaW5XNiw4L8fzVu0fPUheMSTLoNvxrhU6Ml3vbJr8cwtPzlHZJSVEWl8iQKCptCDBPWl/2by2Td3ptRYoDekbfbEvIIIgrfQ6QPq5VENrXjB5zbd9rH+FwIEMK4rfGNw3U+xttKz2woqlVjAKqPRyulsltYAYrS4glIhrS+PWe3vv9rPb7krBgDBaUj011hDwef/OSoMKKTMXmYZjV7fw+dpNfjR4gqi3i5cdsRqf//VPh6f29sAIPJNjNP2FEPB5+dOBUjBqvsj0h0AkQsic2MYk8MCKf73fTsP3o4Y9bV/Vo03X0Gl6OdR6p88wWfEOJ5dMmfNAWSGXrT5H0mFnlLsje2rt17xKx0np5ld6HVls9muX4MrRxr5/LKAq9tWb7seWDrk2RmVCly8+znLVbtuRVToNWRJW/S9Ixbf3UXe+XMsKKgl59NaG6qfPElzubDFfOk3f4YaAsM4VOjOdzi65pOFB+/EVjAl2gbQ1FEBEqb/ZvL1LjCTxJkaLAwhwTXet43JGtBaMVuPCnzCtWDsGn/vz7zcFiPAaSAIgFazPX1h/v7IdrlsAmbDVMcVVFIZ08EXDoCIaTbOJv7+q9TbSj/fpa4O6zIan9Bow1sFw9ASdTpUUPYJqV7RQRaBKRfGpoJM2FqftTM6J32U9OEXT7LWttKzrnAAaf2uo/tyrbpa4eW2NCD0Skmrdl0RODzOyAixDhWkxLYnN8OiD4aEbBqbCvyuoLzUn4oa6jStu7++qfiXUL9VfrEPqjp1SN3dcCfKEwDB/4ZkhFDG8maNK1L8zX07D9yOKJ9qKBiigriblu/1QK9/Vcn72bUpDlc2r76ePIyFv5gKvURicZzB0flfTgVFa4r16dUrjt1PHvkZKEE9vrioYGjlMwUtz+3Clj1nbTI6RxQkPYKf2LX9qk8hY6hzHZUKrXE395usPe+Y1T4iaiDAe5zetfrDrT/75RINrfbVlhKYnK8/e0HOp5X4Xd5y7E/vfNKIhmkgrtAcG1vc2jo4ZaHO95DZZ/OOueS28nW7yaekAiEkpJg22pQFYbXDQZOl10IaGJNPuaM3pG3xxLyCy00ufmSBC1yp1V+s8naeiUS8BILvu/qs8PNf5e38jlsirubRKgzaLDH/Jw+r1xAgAHf52gW0LGKJJxB/1qYCpTpW80P+Xv+1BkfNQVIOtFXGrNK+MfUG8/WcbQUCCKs3vdPjtTq1JzRaOZ3RIlRAECSTidNzgran1hseQGmoEOJKprhHeH7tjL1VTXIYkwpycW9Gpt8n7tFhz7rivIBcFfzrKssD5+xypnLCqJhHjcqNMFRXvkvcnd5DgYCNu0VicbpuXVWze+n9AxAEsehEx/SEO1WjfKBNQ4Ucn5qyH/09NkVmoQtzT41JBQGt5o8wny3JZcXDjbWfHpEV/iUSBEDHXelVlVqo5pMrfgp2BEBweUzBo+7JpF6T4m/uO3sBk6KXczgVMkCF/m7SI6sD33jW6O1X8jpLvC4tPqdJQpo4FURd5QEXN5ju9NC+aD+jNurWuk8NU6Gv9bHbWcu1R/0J6j2c+upsrE+hIbxOGRWYldG2P6xcefRX+8yxk7Wl1Fyvy1stdt8MrdG1FgQNCVHhQUl16jWIFcLqsJvHzDf/4lGka9zza8P/3HPg1N2ouuGEo55C9/MbNxy4G1Wr01l2ZFmdW/P1t9cCCukGhs6Stuh7e07/7pJleF1A6iPUOYRrTI1+PrW83OvI9/edskYmIfMx6UMAAAqDSURBVJHjbmxZcRxMqhs+pTnYM6GiljY4tKp037Xyv//ag85s0rNbhqnQlRueSuhiaY9aSaFnVyw841JMGq4sgicmrpHUM1qDlnESbiw2OWCT3TneylZjip+UFrbOFb0koTyDKZRJeLVMRjmdrtmaMtahraaD4I7H7fkUejmdXs4WiGR9RAajSSBmdDMq6fRyOruRTW/qk+l/fdOQtKnQ38cup9PL6Q3XXeGDM6hfQiCWZY4YzauU0vbsJc62sLRGnXuj08vp9FJyBzrYgAdJW9L+vrBomw+Dyww32SEqIKaj0HPc3b90cr5UxenijeNBkoo4yanuH7gG2FEMHR5fAlKx5/GZwLTXPlyx12rKuCBmZ+Kjl/gFfY9vHVlXaVUFp7wMeJC0Rems+iXU92h+q+E7GqIC8i2MwxwnB1hwvDtJSCCO40HqJVf9GuK0MvZxyvAboWTH50YtBUEAE3CxpJ2u6fx5OfjEdTZIAON/sbSNMoksL2657+XTF+4FF+vnHE6FDFBBxiGl3F75+lzzgw9SNZ2sjNuVizm93uK3pN7h2xB0VXge+dQgFfZ9vGSbq2YSvrKvo8jr+0XzNp9Wf6Gnn9GQE3Tl6KUTG/715ofztn73y8MmnYsoec1ZDt+tWXHIdnA5DA6xLMnXOq7JoM01VVRglgT+tuVNAHh93tafAsb+Ls+AqDPT9cqOJSu+Q8QMT1al4gPv3rlkFV/F03r1pbymRJtzO5bv+TNgGAzkx56/712974prSgtfkxXeU+h+fuNnM2fNPQKGPRkCZWeW49Vv/rPh1J3ICq7hQYGiJsgjKnUUKECsDNT+TYs//+Z3nenOnGLfS9uO/haURxq5Kry8PfLaplVbr+PKqBIIgqDmGFvfhMet6oxscYP/xTWfz/74jHvB8NeqGiOuntyxcM7bM0wu48rJxR5OyQ1EnXGQrDng9LKlOx4kNQ1OgSEE3/ZIraSN9U0DISPiOmzF7yGNzGc1F/hJabilGLdLFW3lPKnc4DpGHRlzba1emoqv7gzKkAdJwWLTXULhAIiYFlYy4osFEASplBJuJWNo4K+n0eIK2pL294U9tHrfNRNv8PAQFUAABAFru08TqmjS8eMKQgHbPxL1pqPnxdpnS6FU8Nvz3Q7PBYC3v1h9NWYS32jT0YCMK+ip6ebQDH3MYLS4grYonVW/BLjtTK01HBAcogIIgCDgjP2+rJMrHz+u0NWCP++L/Cw4FUseNoUVfErV9VBXAIm2SC59PNg/SBjxhfFrHGxnwN12pVeVimXPDgVueeAvFy7fCS6gGlwNfLIyQAWVgFrpffYj8x/h17cuhallarZp63mX7CbGkF9BSG+IuL5k4ZyZ0//1xmzT3SesM1kQBEm72zLtDi7+avbMV15/a/a6oxdD6weLK2Vi2pNom+9M5iwcvN6GXcfuRaalpwTeOWGXVlHX1MrWe/mVUiExy+fnrbO+MIHBYLBvj132z6fxdFyBPU1ZHldgMBhs+eL5c957c8bMj780gcFgsP2XHyS1ahcUkYpwd/bBYDDY8kVffPLvN99495P5JjAYDLb13J3gck0AX9aa5nDWBADeW3kElUIe5482IOJQ29J8bn+/Y8GyoUradPIXx6RqGk9vOKgQ9pBbHvn8cW7XkqGCi/dcuOef1krl6ExM6Cl0P79x695rVvaYq8csh0rO3fL9Pa+8LnbfaGOC9viw5McFo60gLq/0O/XdjyfPHN+/d93y4b+myabzIDa3RWfKsuYUHi0ZuXuT2VdLlsNgMNj3qLDiDqFmfr6cRyXG3DJfY/rlIvVz/4AOSSmoSMMcW71iycKl268HlnbqrQsv45Kjfl+3ZuXXS01hMBjskkNyNV3/Yzr6EjJyMWctfnB7TOFO/JubWlL0cFg1DDZdOjCq72fqvsU2qNHiCnwuvYJOr+Q+dXRxAlRQisVUtA9ypn14sKEcpH4xPyYeDYAggETPCsrNFEghCJKKeY8eOQMI64884uMMdPsyRnf1OTT8ZaTVvMDoZ/vgs1Im5hBSfX4+tNjCpug5jGdHagJUkDYRi0662K2LKco3NLxkdFXdwFoDIAjYeu3MqquTyCEI6qHU/B5iByCdtqWUlxuIi/HzSpI2WMFftbHbmvqkYNgYVvTTuWRsdvRmN8cvvPxgfn4wH/dP7Wzm+MeC1ZROYf8kpghyy7G/3Lljn1DNey5MMBxtHpBLOJT6NkY3talSo2pCY6fGTIAGZCJ2u/pYDaGpiyuDIEgpl/RSGtW76xpbWJq+XikTc8jDx2oaiBSepF/EZVJ5o73zCgmP3jpUvp7Y3q3/h5SLubTWypGqb+nk6K4OIOEzO+oNlKwjdjD7tPovWV83mVhZWUfsZPVNiORSAbOzefhyhFZyj6ERHwRBkJRP79DUZ3Mnkz+iXajjCmkEdldLnbookTw6ESAIai9Ix1dWM0ctIeF0khlUSkdrc63Wgzd0sgSGxltDEneTiOr6aqXzJPrPJGa3NRM0V2tjCvoVkJxHITbUVFY2kjliA6FZEYvYqH6odpZQOoEGLevtDP/T4rx3LnnUNjI5/VVUeGapZ7Eh37APDzOY2aCU99IKN6HAaUi7pTh8xcjjSml7V842OHKmQ5B1p2iwnagU4pb6xK/g4HSU7Wdevit89TafJZ5O74IgAIJvPbu5AEnptVHWJ9c/yH2+355Xa4gKCPu1MYUFBn9S2p1RHLsEiXjD1v/s4+aRIUGZlBn3+KEJHL08Iju2WzrY6gf6urBpQR/BkW9hnOZ7j6wrry8cMW+AIACCn4WkYinaHY9SJOa3shiVDM1G4Ag4E8lbGF2kDKv74K3Qgg7hc2PtJL/bbNRUqi3x7hHT9YYyU/VESre9dsj0e9uYqsYnBUVVtR3PaczwAkjIbI5Dbb/ql095HmBQU2HdYzrvqT/kZkBDVEAl5oy98PaEpVLKacSkRXDwZYTNHE9fU98Rm4/PUnf7GSAIgKhRzAWVYkDcwWDWsbW+Y6NSyqSCZgajarytht3d9WzhTAG53O/ON7uR8fpegOcluZAWkxM8B46YgXb4wstQXXl7zHO0fQ0EAdBuXaxBc2GgT8RvYbBaeFrTlZVybl9v/QTqqp7D75lcjz+uSOm2COu7uPzW52UmQBBkpMKLIl51FOqixdwPZ77+xnuffLHoDDKsbAy7nZ5pfczsvTc/mDN/8xXHR3Xdf4mB/rdJyGwisfjS0T6sMxkNUgGXX8KRPNMKF/pKj0OYpDRU0LlTtwKBakDeR5xAl1TFYNayentejGUqpGximsuV/dcD80d4hp+jVAqBkNswobpiEcdcpuKFVT+XQmUwnisSICMVXhQphD3ktvpqtVrG9hop+thdLfXV1dXVjR1M/v+uofDcJRXUs5jVXIliiob2Ah7TYND4nyalXMKlk1pGdw4b9SLLSAWjjDLKKKM0MlLBKKOMMsoojYxUMMooo4wySiMjFYwyyiijjNLISAWjjDLKKKM0MlLBKKOMmmKpVKq+vj4KhaJQKPT+LRAIqFTq4L8VCmO+1osoIxWMMsqoqdTAwACPx6NQKGw2m0ajaf+by+Vq/5vFGm29IqP+Tv0f9HbKBjOVu0QAAAAASUVORK5CYII=" alt="" width="333" height="24" />
修改了修改时间,和访问时间
5、shutil.copy(src, dst)
拷贝文件和权限
- def copy(src, dst):
- """Copy data and mode bits ("cp src dst").
- The destination may be a directory.
- """
- if os.path.isdir(dst):
- dst = os.path.join(dst, os.path.basename(src))
- copyfile(src, dst)
- copymode(src, dst)
6、shutil.copy2(src, dst)
拷贝文件和状态信息
- def copy2(src, dst):
- """Copy data and all stat info ("cp -p src dst").
- The destination may be a directory.
- """
- if os.path.isdir(dst):
- dst = os.path.join(dst, os.path.basename(src))
- copyfile(src, dst)
- copystat(src, dst)
7、shutil.ignore_patterns(*patterns)
shutil.copytree(src, dst, symlinks=False, ignore=None)
递归的去拷贝文件
例如:copytree(source, destination, ignore=ignore_patterns('*.pyc', 'tmp*'))
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkAAAAAjCAIAAADzByK8AAAfdUlEQVR4nO2dd1wUV/f/ZxH5GR990vSbx15j14jRCKiJvXeNLfYuBk1sicFk72wDlia9izTpvYgU6b33uvRepcPuzszvj91lCwussgZI5vPav+4c7p6duTPvOeeee4EwXLhw4cKFaxwKGm0HcOHChQsXrg8RDjBcuHDhwjUuhQMMFy5cuHCNS+EAw4ULFy5c41I4wHDhwoUL17gUDjBcuHDhwjUuhQMM1zhTheONiwbhjKY+4eZSqpn+LBptCtXZuqnCzMVwvgZtCtUUMNresUfHz9ET611H+jUqdQqNPk8/wL+zlGxKnUJTn63naNM8km57q+oSfqJSp9B01lgF+zTm/W5CnUKjLzP3cmmVlue4Pqpq7Xzs19JoU6gv/8jKtQlz2aJNm0I1uB5XXNjLtciwvqRMMw4v6hhVP99DOMBwjSdVON44rxuYW9uNoELtMaEmC9QBAQCI6GCe5DFfR40AAATgs0nNDcxR8nWU1NvT4ehKkgUAAtRpGm62ac4TYQABMFXzuSrjw7ttf1dn4sjpVn2xnrtBnAOn2+n6Fupl0vMe10dTVor3Hn1YBgCIaPko0GPXSz0ZACAA73iTldjGtUFYvYmmZ25RjMYLw6QLsJ663CgLZa14qXb6cVUVa01XvaAV2jDajuAaVhWON9Ye/NMjv65HmF5YS8pFffpkACCi/sPcpHv6Op8BAAFwMr6uqhdFxXc2XoWwelPCzCara872LxJ3uK+pLFQBJkKA9F+6JbUo+QIJhgCYQtd9VMBifvC5YHUW571eBxMhQJlpYEPKjDlJgiEApumZwcUj6BaX9NRQHHXphc7kF6+tSt+JOdxeSHM2+woAiKh9KvztY0frJTCAAPghIC26FRF8HURY5d7PDj7RdU+r+9t8/3BJC2DvypIMT0+e/MmkOauU1GKl1OmHqqMg1ODq6jlKJylvxF6D9tzXWpdWTZ48efLkyZ9MkpuldEotuP7vdhLXe6rC8foaFfPEklZRJLU4uBjMpACIaGdY25KR5LSYTiEAcDK+rrLnn0YvDEO6erKuwQAi0770KRRztKucYgLLAMoXWr6+nW3hwcayAPyHrjMiemGsxub8341gGaC+wCTodWudR4DhBJxeY0t1jv72K2EAmfuZlQxM6baHhDsraMAEosW9ZEZ8XugxUw0CAD8EpEYJ0wvDMAxD2RVefxw4+8Q4onjMh2HSAhiKIqyG3Aj6of9bpjDaAOsoCH5+cSmBMP3bI3CgWIIhbFZfT3d3d3ddkis4obARB9iYV4XjtTX7VT3y63tEj5SGfKOrTiDaGdS2vmtOPq9Pn0zUf5zXWM/859ELYzF73N1IE8AgAGP11KW7TIQpX2j5BvZ115WFKMCkzzRtjOtHhpnetsyEV7JAfYFx0Nuetvy8gHUwZZah88tGFuufd4rHp3LS/Q8ZwAQwCMBqU67b6skAi3spJWVt+RQns6+A9pmI3IyugfTCMAzDUHal19N9px8bRxR3fnznRyJpphB7arJd7m/7WADrLMmIdjLzrZHAtC3vjfa5xV+uO/SXX83Qd1hblg/1tOK/EmB1QTZu4Yn57aPth0SqcLy+Zs55veSyNtHrWUox0f1C38+7ob0bxaKCjebS9B/nNTWysOEerYxnetpfmoREd/ayPpbXwwtB8u6QKVMto4slsma2ZrlxZp7EAYzd1pF+hUKbbh2Tx0K6utsdnMmf018a17PZI8JMb1Vd/Bmq1lKnxCI28q611siBOtvA+WXjCLsdm2qNTPbfrmV1Kap4VOcUGjxDXDbovlLNqJKoPqYu/WcHAxnOwBADsFo7b9tlOo6UnOpmFM1M9tr1XOdMRF5W91BveCiSbHxyy60/PcZ4IlGqAKvNdr2/42MBrD4j0kXzN+9qSWxRhMXs7e3rY4l/v+DrXwywTGuSlVdg7rgAWKzahq+3/eKRNzD8wlAWm9XL5r5IIgi7l8VmoRLEXs0JxzTV5AyCIkcTYCi7PkKRCCaaRoqbzhIR0t2bdZ0EIDAYwDAMQ5gsVi+bO+rZbFYvSwqYQVHBblE2m9XL/kfSC8N6ajzevlqoYX4uomg0HwidJYZeVjO17H5Lq2wZ3rrOKcBhFcwbGGIAhrJ59wWGYSjC7mOzmMiw9wiSbHxi876rYzwIGzcAq8/w0Xu064lkAJNY/16AZb68dAtojQ+AxdLWL972q2d+fe/wthKqNMFuphoZMhxVgKFofoSJDIAlARiL2evuBn9CpV5LSztPJA4CMFwj0ruaHJKjDkHDYnQB1lQSd+OFJkHLXhKA5aYHHDaAN/v4XLO1XTZYCvGDhCYbH9+09+rYLkgcLYB1V+bH2+t5VIk0d5XlxL4y9BKlVGdJjNmNldNX75AUYDVJjtq/HSeJnwET0FgHWL67e2BwcKm0u60Lop7Y+NWSnzSHBViaxZmtyn+Nbh4hlrZh8bTj+ikVbcPbSiZG4EItGgGAUQUYys5znwjDkCQAQ9mdVW8VyJTPvHLaujMujW2AtTZX6tprfWMdMZ6qkTEMay0x87eYAANodAHWkP27s5EMDCBJANZRrO1uMcPM27A4187XbrlUAYahKWOfYBIDrL060/SMXL8+X7BgN9AD1x0r+CZ8gPXUZLn+Ks81/XKp4s+ulTyj7sq0V/fWyslN/HLZ5ntu/QDrKk+0ubtGTm7i9FVbH3jwKNWQ5U8+KCcnJzdxoqwMASLITJCdyPNgyQ+nzNKEXKxNdlHdwzk4caLsV98eIgbUDvOrpA2wlmT7344u4rm4YN/PFrFN4i2LfMGFjf2nc9GRx3aJAmO1Kdrk9u55cnITZZVuaAeV5Ls//nEdz/b7uwZvBRbeNITpXNo6h3dw2y/mkRUYVh+q+dOW2dy2ZT9p+Oe0YRiGZdle27dSTk5uouwE0dMpt+cPpyTeBGO65bntSzknUlaGsFvVLaUWw7AaP9V98l/JycnJyR0g+WYMmCRINjykuJDX3Zq7NknlXYOcpgSd7fJzeZbyv7pk1QzMDfarwuHKqtkKD7wKRhyANSee0qVPJZPlSDCBk28B8EQyWY73uZze0SaGZk1mL+mfUfhmciZhaX1sROxXFHhNpVLkBPrkfLZENvRnbNCGyC0kkhyZLEeCuWkfmNTvxic0tfsFIp2ifX3V6ibkKTSv1wi7a+wCrKekKuYEiSRHJk2A6Sssg9xrM38xIPWfhGkGVvcyxVV4Y33llanK+nxLOQ2jnQHZvNHYxyhLuil4VPCjp7fU2noviXeUbnY0JO/93rZ6an0inJeSSHJkkizMuSKwDIl/ReQdA13EPB26UzKCj+sKeKX9UjmhVPzd3pRH9jAb6Pwi+0DbCt490llq6vtyPpksRyJN4OYD4Qkkfv/f+8S/FaVZR1iU+xYNszsJxaVorb3UAYbV+Py+e82ZZx6pY3ceTCKAtVdnmV6Zs+KiTTGToyZGot4xgsxXS9bTYvhmHIDNm3/hl193r96sHs1kMpnM9rIUu7tKizfedeXCCkURdn12MOXs14oqfIBhKIqwa9P94TPLtvzaDzAMRREWk8lkMquSPZ6dWrn9kXs51wUmi8UWneFCETaLyWQyW7Jea55TWPc3A6wlyeG3Iwvn7LxpGF7LZDKZzHwf8qWN638iij5omuOs7u+fP3//fcvoOiaTyWTWhhvd2jV3weEndkm8IYoibFa284NjqxUUFeXljx596pDYwGQymcyaEJ1LP8zectcwrEzANMPu9v7lC47/5ZrajPAy3aw062u3n5E80prZvIQ3irBZnPOZYnF++96z6n6Zzf3nU+B09tslGh3fNH+XqltKmp/qvtOPDMPyW8vdH21f+eXy62bRJfzceLXX4+2rN980jy56x+ktVmf3+nmyh9VD80Ru6So3FaWlm3+2Sy5r41hGqW1eNUv2uG4sY5DbrsLh8srZF/RTpRCAoWwEYSIIE0GC/XWmUQFk8OZtW3c3r1HMvE6R3/80qBNgcCGt8x0TYSLIay/aZDIsSyJdz+rrFYZYkBftP2QYMnqbwWT1IQgTQfzcYM7UOsEtT6BvlMVmMxGkj83yciFCAJ5oGpHH82GgGwibmRZmPImqppKPoNhYBhiGomhHa42Dtx4EAAGGJ5DUFpl6vGpGmB31IeE2EIA/07MUZVhnfXC4rSwJnmtqp1OGMBGkprqAaA0IMGmhpaNxJbfbmqpc1RdECGgrOMYkIN15xbEXdYmQmtGewOwKBKksz3xiSVxo5WpaibDev/gUQREWgjARhFGUeMeMCGmYnw0vqOZdDhaCir6stBTpepvLkuBvHAOdaxEmghTkRV4yATIwab1rqJfwm11xXuRlU3iC1su7CSV1CMJEkNys0NNGAAKAYOJO5d8fKIJw3cjKeHPcEEBado9TyxsE3BD5YQ3FURcs6Zt8Et62oCj2UQDm+3TPaqUrRuFFY3YaTAKA9TUx/NSPriFGCN5YaHdtjrvqvlVXHfghWE9ttuv91VPnrb3xqozNfxw2F0ZonFu4QdmlPwrDmvLfqp0TBhiGYVhjTiDlrBDA+lWf7k08s0rCFGJ7fpDOecW/F2AlQfRrCmtPPnbN7a9MRYv8KRc2zNktHIY1x1nd23v0PPAu4JewogiS6/77afmNVzUC+ZslNEYYXNs6c/6hJ/aJTfzRiyLZjiqHV2++IxiHoXXB9HNKJ382jeBfjiy7m1Rj88gKsfdzxouLO/adGzaFWOP7dM+a06rPbl+z8Htb0IagKIYlGx1RmLf7L++M/lOWbHRw454b5tGMDkEExmvvlJ9zSC00X+DHJ+hs/2aXsm1yRZegZbSa4ooZx3TixCMshrp+8bTjUgEYX2EBOtOpw6UQm+IOaFBliYZweVcX7xmGokigF20yCcgAV88+lsA2VQUqFNIEopF6Dav/RkFRJC/CZAIMIOOIgbRBUcTXlThMChFld1WHKcDkqZbRhSiGjW2AYRjW01bn7KMHAQBRddd5pJbxBm5TQyntJRGiPVfwzuDf9czWxFSvVYC2xNLHtaWfE2hdTQHRmggB7Y2vYlM4be3VXiEvIKC22ua1bxvW0cgwcNWF1Iz2vsmtwXoLimMv6uh87xqfOjLnyxlJd82Jw6QQu6ucgu0XAPoPntFh7bw3QxQtyou8ZEIkAKMzodkCIXSTf4TbeiJ9l29CDA8CKIo2lMTfsdaEtGwfpJQPTBLmZwadMBwuhdhRrONuMUPb4a+s6lYMwz4ewBSvGI7hHKJEACv2I+5dct6uXLi9p640wYIqCrDtSzfSYoSemS1FkZo/LVx/x/kfDLCWZIffDiltv24YwU8VYS0JLx/snyt/9pkXf0A3x1nd26u0V8UqtkkYLGhjlPHNHUoHH/OjsMZIg2tbj12lv2GImOY4qhxetem2vmAmEc2yv33g4I8kT94LbradupWbl/iUzXsA7I+9a6bJ7FZ1TanlIRRF2Gw2m0/Uaq9H21acAf5ZDSJuJujsXDv7oBo/CKty+1lh8Tm1sAKRLfnQWDWl5f87OgjByu2lFoHxJQnAQv3on5IBZBiS0MMU3E8RLfD6L5UEAfhqtkAQ1hi9jQzLEI3otWwhYzT3JgwIxuGieUHJAMZm9Xm4wpOoFvoNnBM+XgBGX275NkYgZmhuLFW3IULU5xsFANZUz6DZAAJNf5NPRqVgLx21vqHWEADzzF8ZcQ+0p+UF7yIS51s6mVRhddW5qi8ABNTW2r3xa2tPzg7aqWZ0IChXkkU2Q0gSgJUWxd00AxDd6moMQzDWQpvy1TxMIADkXQSCsK5y6wCbOUT6br/EWKEopsEr1Fle0+bXlPKB+1NKArDc9IDD+trHQzPTujkNOMAGVW9jse/jbwjTFq2lRAsfQYUKlgcp4vgXAKwl2f7JIcXtNwwjGwWbURRB2IjgWsHmOMt7exT3qFjGDUyWN0YZ39qhePBRP8EaIw2ubT1+XTOoRMSyIUznwpYZm24LzYWh9cEaZ5VOqnCDsGx7tRdu3oPx670ApnhJ/23h4CM42eDAht03LGJLRdMMibq71s4iCBAsQXvrmp3KdqmV3SKWcRpKy78iHNWJFXfrVThcXjlb8aH3yOfABCQBwIoe0mmTAFgfUvGOKZxDaozeQSVPAIDgktXB6j/UoGdGloWBDAwrhdcJLhxGUJQtLq81PMAQVkeW60QKdUd0/8vBuAHYCsuwOIF2cQDrymOEHwDET/Wt7mcKX/i+5phE92VEIqRtfjiG+9yoq8579oII6Vgej2MUMeIv6xIhAL40tlNNY4TGuioa2T3LHekrjgQAawmJ81IExBlWnvoM4Xuiq8I20HYukUgwcvkjm0+wuKSAvZqAAMNzbQKsyvizwiiKIigqdp3P8ACrS7/3ymCBQ6hrdTevg48GsNOq7qnDPUdHTxIWcaBtlRmGJyCCjIyMjMz0r9eJkgzDsH8zwEre0K9u/ObkE/f8YQyLfMFP3357HviKe2AVePx+au13V/qziIMCDMtxUjm8Skk4BMMwNMv+1n5uEJZlpz4Uv94LYKe5RRziVe31cOuKzwmcoSEsAgGCoAO0EC7Aqlzvblz8qXhLCIKgI9piAYZFU75dNO24gVRDsOEB1hS7X50iy5nSh0U/3BoQIYBhKIoWRJrJkWD+n7jlDrFeajiAIb19WVcBkTOfJObbASwDw/+PRj8g5m1o1PQeAGO2JqZ6rSCK+YEyMHfuENI2P8QDWEdTqbG7LgR0lGx9dePdlhKJEACQmvEWB9+nrrqLrFzNR7zEZniAdVc5BdvPH8Rn7nUxchYAGIZhaGNZkspLTf6fmLiTRaeGhTQcwOqcAhxWASDiA29UcBsXO0X41A5RGyWJUk1PbNpz2TBs7AZg71NGj6II0l2X7/VgDQQRZGSmzhWaAMP+3QDTuLrxmx9/GxZghT5DAuzpqbXfXVEfHmC5TvfEAAzDsu1v7T/wI8krM2YYfkkbYIrXzWMYHYg48YP0Slfl7xYpKtumlHcOYjnIV0RT1i3aLt0QTBKA7VOnyAKwPqS8pY+NcN+XRT4D/4zT3vDcFJ7QDz+TiAJxP02SFCIq+o3sju6Mi9wIrIDTOKaWFL8HwPpaE1M9VxCJn+pb3ctoHeQMC/y63qaIeLelRNoaQ6srbi++VFNboqsLAd2FOlY7rXS+d4kXrkn+EEkOsBlWnvrFHcP7zBOKogjaGZPot1uTxxgt2wfi8oeYBBHYgFGBImitna8tJwIzZbRwBudIB0aq2Zjn14esA0NRFO2py/d8sGbKnIFFHP9KgLUk2T8+qLj9hlFU49CGTbGWKnsU996zihs4cpuiTW7tUDzwqL+efqgU4sUtiseeuaaJBiz1IRpnlU6qqNy8OzS/pA6wGxZxA1KIouICTEwKcThFU9Yt3v5QCoX0/ZIghVj4QIM2CQDIOaOp70P+pRiKYWhD5CYACAAQjCM+bA5sgP5RKcRcRvh+IhHSMt0dVSGuMxH1FpfEX9ElQgBAQGeTra92nOsSXhy2Pyh35HkuCVKIzcGxXgpEImTo+CjzQ54ZKIahnaVmvtazAYAGYZhERRyikn4KMdX05Ka9Y5xfEgCsvZrh+cd523LR9t76fM8/96+6wifY3wywutTUAFNTcXVHf38RR0ngoCFYc7yfv693DDdl0BRrqbLn6HngN/CJVeD59NThA49sE4WKOMQBjBuA6YkGYBiGYdn2t/cvh7aomEUO+UgQA7A0C4uAxEThaXAJAIZVez7culzxhqU4giXo6gbk9adLKl2Uv1ukqGwvjmBxGhoBjMEq6bFy+8srZl2QYhZRDMCK/GaoU86n9S8FazKxVv8PCUCGIYnCRRwYhmEF3lMppCsClfRFUeaTYGN67YA9lhoiNwEAEY21B6ybEwMwlN2d7SJLpvw8EHdcSQ1gXQ3FlmegSdPmnXpROpJ+RPQ+AOsrr0y9/ZwI0fQ3+2aK7mnQUesbaj3X/JWhQHUHdxoMAEjNaE9gagQj7hKHZ7pWp+OlsEePGIC1FOv5mK1yeO3EXQrVnZIRfESLCNGtrsUyRF9Xm/JpHibyzqGevGvdXJ78i43xgAoODOssNfe1nk3U3P86JWHAakkxAKvP+PWVgaJ3XOigQJM6wFJNT26+qeo2hteAYZgkAOtrYvipHVkNR4keaCtPtrr3YQDrrkixvbNr7Q6dBAG7rrKEF7eWfyYeYJ2MKNOrexSOGKXwWgbnl/QAVhZmeGcTBK08pOKYM3RHg8VgzfHWNrbm3gKPmkIfcO7bb8/DIghrija5vePYZbXXAmX0kQbXtioe/s0hWWjU5jrdP7JqwbFnLqlix2l9iMaZJ5Rh+IXVvSYdXX/qkR3/tk8Xwy+JAIZhSQb7N8zZRwrIEnlGJ+reMwsWWs4cr7V19YxDGuGFIq+dcRo3TcKHXM4cTZZftP2hV2GDdIKwgQAL9dP8guzk0NHD/4JC32lqZAiADSEVbUL7rhfco1EmGr1NZ/KXMxdFmU8iwZBRWLbo8sS82wAQJAMYwmZ5ucByZM83gzouLYB1NRRbnYEgCJo0ff4p69IR9CSs9wEYhnXWB4W/hAD4TN/qF6GEQUdmQehemsE2/yyhZ0F7tUfwCwgASMfyRFxVRyND31UXAmChNCbAMHEAKyuOv2OmfzggPZf/Swq1vUwhAGZaeRkwBLnU9DrK4zv6i9vx/OXMzeXJv9hoQpovf04sE571avQOdZGXGGC5Ga+PGpjejCsqHdR3KQOsxk91748PDMKGqN4aE5IMYI+/gSbPWHbBtgzlqacu3/PB9q+FFjK3MuJ0jv7fMgW1WMEsMNpcGEE/9L+V32vG8Vu7K5JtlVfOWrtDO57TX2dpvIfOsd23bu2HCATC3A379JOE3ehkRJlcU1y144l3NYqiaG1KmLPm0wF703M6a8t7wwGYfw3X3YE/i9P+LtObckpx4ym1oDoxluVhRsqbIAiC/rflgnbYMNtTtyTZPT40b9aOm0ZRjdy+ivwpF2+e/dNbdCFzrKXKnjnrL5D8CrmG+R5PT8vPE4y+MIwLsJkQgaB4XSuohGOZ43T/6GqCmOkvvrLs7QMihuEXhtUFko6uV/xJ83VuG4qiaJol0dIniL83PdexFNMTmxbsUnVLqRnsPHJU7fnwh+WfL79hEVfSybGsdL+/6ejvLwfsxlHpeve7xZ+uvOuQVtnFsaxwurXukKpzZvUwM87RFPlFNw3SpBSEFQfMpVMhAM6ltLUwMUaczXQ18vrgsuY+oYJDRqz151QSBADknNHcx0YxDG2M3kklyxKN1KqZQv+jJN/zEzIJAgAiunqzETYnWYQ16JoAGRgQ3HLFzoKxct0IAMiQyHfyMQRhZ4YZyZAp2wZNRKMowmqrDNlAJEKAPFXdJxj78HkO5ruqENV1BMKk6fNPWUvvXyp3t9U68QAWK+BeU0Opug0RApprhLeY6mqptPZ6TgAA0jLdE1WBYhja1xyT5LGMSFtp7e8lmgXv4BTTL7B0Nq3CsPYqlyArTjG9v1SGRSvDxM+cAMAKez+HWqylKvNPB+0Zlh66wv8Xq7Uy/am9FgEATiIRxTC0q8I20HYekb7TJz5aEGqNuSR3EwgACBj/FJZTyB0VndEJvrs0RRYyC6gh87GTIQSAgmdMUDPWUBx92Yo+3yHYuUp87h3FMLS9UMPF/CsAIKK5SnJJ+QgnwGr8VPedemDwdkxnDzEMk2gOrKM6y+bewn3A+MlagbqxqXMFgy/sXWni82O8Y58uWHfLqRLDsJ7qTKd7q3nNs9Zs1eaHXN0VybbKq3jHPl++5RePjJwEN/UHYuIvjurTvYl7ufYLN58YEH3VJjk/3SmmxG3JzosvMgQN23L81c9+LcZyxqaz9BCBWKw83Eh5s4zMzO8v6gzHL44YgepXFfq7m7Nb2TxmkHKjQp+/zn3bb7nxCu31gP+owUshvnppcG3bLJ7pptt6oUM9b7Ls7QMih+UXhnHSiEu4ve787ZVA9JVmfvqHxQNPz/KrJpGDb01d7flw64ov+o0PUoNzB3kQV7oof7f4037Lo9qD7sIhrHL7yyv2/ektrSisOGAundZfxLUhuKypT+z+UIUPNGifCNabGb9NHbiVVIHXfyjkgfWKMjCsFFEvft8pDMNQlJnr1m8pS6ZsixZ/0ljMXjcXMKBz8n81rE0/uAixq77I8ubMJX9GfGgHwuouqYw+BvhOfvrc/E56K8Z8l5bus1qgfbaJja7QAO3MKQ47IGAgo2a4zT9b3HOgt7gk4epztW9sA33bMAxrT8kJ2g10f3CVQgUHV60MYz+Lfk9mDqAXT81BMV6Kgj5rWt+KLxG9FE15ZHcTsaNinu3rl4PutYZh9ZmPnYz6jRc6hDgNQq+cNP9DBgP6Bzqnw3OzPqwIEa32fbb/kbbr0GmXMSJpbuaLS7pqjDC4tvWYuCpEUaEoyq3iQ7NCQpIyhyrfGN+KpsgfU5Mawv7lYrZUBKkfkBq/cP0DhKKpZqeuw0Ou/BxLwgE2NoWiCJLj8vD4mo1X6a+LhygxxzAMy3l19+AKaJOy0duE4ODojAxJwq/xq2iK/HF1v+JGnGEjEtpZV2B5azaOL1wCSrM4e4OkH1owPuiF4QAbo2qKMr61c64sT5tu6YaUDm7d8Fbn4vezZGVlZb8+TR509yhcuHhivqsOpexdeEaKk19jRSiKshGEJcGHPcaW0OH6AOEAw4UL1z9GbUlZQbtgWJZEGvaz0s7XbjxM8+AaQjjAcOHChQvXuBQOMFy4cOHCNS6FAwwXLly4cI1L/X9sbwtTYewNDAAAAABJRU5ErkJggg==" alt="" width="424" height="25" />
8、 shutil.rmtree(path[, ignore_errors[, onerror]])
递归的去删除文件
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAaAAAAAiCAIAAACWW5ppAAAaiUlEQVR4nO2dd1wTZx/AT+uuA4Q4Wlu1vmqrtu4K7l21otaqVavVvo66lfpqa2ubS8giYQ8RkamACgiCskSQpRBmmNnrBGRkzwsj7x8JkEAQLFiszefz/YfL7+5+ee7yvWcegFYDmTFjxsw7CdDvGZgxY8bMG8IsODNmzLyzmAVnxoyZdxaz4MyYMfPOYhacGTNm3lnMgjPzpmhRMpVyTpO6w3Y+rGBLZWyJjAOrebCSI5OzJTK2Ss1v6e+EzfSEZpinlLElMrZMwW2EeSo5WyJjy+QcDawPaFFzYSlNpeD3e6pas+DMvCGaFQxm+LGTbkGFHIbh9iZlDtbPdTwIAsgbJEa2e4THxxgQQDqdLSyuVvR/2mZeTQvMZLHi7JBIAMRP94mI5KeddEMCoMPH3sGhtXqjiehxARcXnQpJV74FjutLwTWruGoJs7G/v9JroObCMoZcxjHXHfqWZgWDduvICdfADnbTwryMxz6ziCAAooZibhKfBH/mgQdAcDAGuzerkCvt/8z/7cB8jZItkrGkSp6pAL64tsApCAmA4EAUYbbXLadUXwAEB6BQH1274cpq15mI/sD/4qJTQelqVT9/oz4RHL9ZxZLXFVIzQ9wO/foM7l9t85uVLIWgQipittWZjS8hTyOjS+rKRXXlouJbHleP7cGE1vZzzu8WajYr5Mjq3edDc3OVxpdGU5NyzIc0CkQNx7r/XBB/xsdlnM5umQUcs93eAtTispgHTgCeNDshp/OnLQpqaWHYbCQ4EIWb6RtAKIrbikTq7ObC6vALYlYXXnfcb4t/TNd07KP4W+kTwVXwcnDfjx45fLDVp1/2t+Dgioq4q3s/sZy35Vwc19RTSJCW5Lx3geUYS8vRo0cOGzJhvllwfQpPQ/U8u/Kn64lpgg4fqcpuRXpOxaKGYwPcWRRybsh8Z8xQLHZfltlubwUtMIvHe7gDiTQtOJjz8sXT027gQJTj3IDYtPqi0PtOA1HoyT5Gdbd2pAUl4fbf2nwfUslq7r8v1WdNVDE9zv2bcW9KcDCvSclSK0xWm40RZqS47v7svQHjFm5yiC96ZXBF6f3L39m89YKDObCCo1G9xRka0CzPCj2xZNcVt3y2ceNUw1NRY1Z4kUbiAjzYZfU1j4/6kKyx7pcpxTXK/k+7r+HJpUyBjNPUr2m0wFyZlCmSc3vmF760vtglGAmAoEnBNUvLs9NuvOdAnB8QmyOnlhSGzgGxM2+ERdZ3eWeqeI/vXd1sc8SVpey3u7fPBKfiP4k4u+xNCU6YWfTE3TMqvwfBVPpj3ImFU9fsvfL4xasz+YcIrurenYhbybll/Z9J93DZtw4vn7XLsXP1DS7wun1tls+9CH6lSgPlpd9c6u7xy7tpN0irzjyOAgd6P6hU9+CR/KbgCOuS96KwHwQnsntwezfLKgvT/QAQ7EJw7Bcvkg45udreT4VgvqS+2Dfc8XO/0FfYTauBtJpyZhry5NzFuNR+q8T9MwTXDCWk3rp0uUeC6zn/DME1FXu53nC/848QnDKGtP6LTSfd8liMN36ut5imFw9sUeCA/hWcml1NvTcX3SPBtcAsPu/hNyA4DIsZ0kUN7q8hot53OfjJoqMenH5qgvSL4PjNKo5a0knqMK9JyVLKO94TLSoOP8sLd3p5TwWn5qglNImY3d1Do48F16RgyISVcjm3Dy9Ps4JRGHj41OUz3QquSUaTCGmqnrTi3xiNmb9vmLfypH8cT9IHR9MoWEIJS/mPmx+nYpMfuw9CgUB/Co4Piyvi4pwBNK4HguNLGygeweBYN9cLOYm7u+qD+2vUZWU67Zq5cH8ooy9/Fz2nZ4KDeY3Syvpqip6aUkEDXSmmqg3GRwwEx22U0UT64BJhHa09DOY1ymjCanJxZugNwvUXreXeouaohGX1rITsR0TXiDx9sJoLiyvqqym8nCCnfVMtPl1yNiilNYcysaDDfBReo4wu1n1aHHod+V+7P0JqurmufSI4nkZC1X3Z/LAL+w5vvRKRrtVALUqmvKG0vppSX10uFbOaNFCTnC6t0/3JUIordbuIhHRYyVEJKwTVlPrqUomI1agb+VWx5IKy+moKNfrK/qWIj7464peU1frdy2XSNndz1aJKYTWlvpqS6b1n/Y+HfZ7kajVQs4IhrdedvUIu5XQSPVclrBC2Xk2hgNF1Bx9XJShvjxQyX9kVyMtxWrXg43W4+NSGXt2UPKWUKRAzHsV7fIL38+CV1cmYAgmjXqxHJOc1mRwf1/DVxpH1Uo6m/cryVTJmg+GnhsjYUgmjwWDHRtOn6Bo1R6w7eEHwEDQKAEHAM+q5kN52CpnpCRN8pdQgDQmjQdplz12Lim0icwlTYtDD1azmiMSMekF5SdZNAAQBNHZCQFyBWJ9Gg4Sp6JRGi5JOo4TPxTktSsmuruprwWnKGKl/HJg+96fbfXXA16N7wbWouUp+SqbLjrHWVgiEFcJ6rNUHU6csO47537chjPaS1Qlu5qJLadVPs/yP2FpbIRBW1mM/+HzJvgBKpd5x0vySOyeXWo5+HzHF9nS74JTshDD7hZZjRoybucS+TXA1qckEOwTCCmFtaTl6+NBBg0eMtkQgrBAIKwTi8y0/OJcYWamoKOLSToQVwnrs2DEjho2f83cJLifN/chXCCuEtcWY94cOmrv1SkRao5TGf0L6385ZVhYjhw+ZteuST7mCx46/+tPK94cPmb3r4q+Ov+9ZbW1pMXLYl9+dDk8I9Tq1cY61pcXIKV+fJ2VXcbUaSFsZCB62QSCsENYWo4cPGTJk+GiLtu++5n8+kXzd2eH0qP99sxxhhbAeM3rY4PeWHfZ58hwWV7IeXDm47j9WY0YMHbTopOddjuEPQE6X1Eb7Hlq/yEp3NcfM3f9rVEaeXNbRg81ymrg20nPPynn66z5m3g/IR8/y5fLOxtQlk3f/3JKZyw4GZ+coX7sYDY+T7xbsNQPnMAgFAkhfHC2DGOr6CRFvRSQg8JhBKNTs6NSCOnZHx6k4AnGhZwjpQ0e8FZGAIBIsMKiB7uFRUJlAyW/WQFq4/PZd98l41EAQBED0KEe8NRE/ygE1AAQBNMYi8vZJZ+IEDGoACA7D4a39Yguk7NcbIniZuN3JcRyRgCASxmBAAAQBNGYskYBo5WJFp3tMxXopICM9kcPx+pjRGPRQn2iyiN7ZhmpJJSMnYEDrMa2JhNEOIACCg7D4jRkl+jA1R8B+sN4RjyASrB3xoxxAAAQHOmDb0pjq5YVlGKcBc+uq0y+4Y//jE/MMZr0BwTFekD1Pr525Ch/TL91w3QkO5ouZj9z2frz4hA+ktwD1RQHp0NhRH82cg05rr3aq+E8izi796ONt5+w3Ld+MzoP5Wg2k4qdE2NvOnL/vNr09sqHsLn6fkeC0GkiroZQ/vLTPUHDtFBVH2e+d3cMmKpUajzxg87cJro1nSfi9NvO3Xr4d8cz/xLnTJ4KzS0XPXO03T/p44+GbmWVaDdSQQTq7YdKQ4YuPE0LZcOnz64c3fjRo2Iwtv4fGi+DSbO+D67fvwsdmGrXI4LSIC5vt7LprosJp4SfXz15x2OvR/STH3ccu/ZlYUlmf9NseG8T07648olTqw5RM5r0LO5ctP+oWThPqdnwSenzDF8OWXrgRyTVs3ioZ9LBTW75cccr3Pluki0wOPLhy1tAVl2/FvjA5CxTOjTj95Yw9l5IolN7fl3xy8BxnBwAEAZTDGILnnxVl9UpIy4pb7ol/DwXOjkmniQymZ8McSend6U64EXj8kbyyOgWk1UDPHnt/SkQNBMFvMoqr5Pp2blaCy3gcCCD9A+oYKrg86BbRwgEEPKOyRaxGDT85hmCBcThaRJf2bnpqYiSq+yaqml2XFwiA6DEk0uVKvlYDNau58dH4MQ7gIAfM0UIWbBCsUTBCbyMHoLEfhCRxYb5WA2kUzOgovCUWBThgx0VndXaxSkoNCUV210Tlq0Wl92OcLV09cUy+VsN+U4Kzmfxlu0D+VroTnLyEGfPLttnnnxq1TVj1FcG4b+ceDcltL1D+k4izs8ZMmX/WyFBljNTfv5/6xckwctvGd1RwZeTAE19v3vDtkbO3A11yayGtBtIywpxPrlx37NdEGqTVC27x5rPOuXWQVgPRo87vXTjvMCaErYG0GogWcXq33bpLgQ+FhoftqeCKU/A7ltrtPXHsSHBUSIUA0mogbamP/e5F23/zyOXpwnjwc/z36zcccgrV202/75Ogg8tmrDoekklufcby4Cz0NyvXH/eO1NtNH5l849tFn6w9E0UuMPE0huM9N3/x0Za+FRx61PXIRzW0tl97ZpL7VAIIuN99WENv26ipit/lih+GcvuDWiEycNOzRLcPcCCA9POtpil0NT5G5EwiZgDS+XcaTaqGGJnXx+PQgPu9NCGrES7x9sePdAi6KzKSy1+gB4LjK7lRC5HI9xy8fF4a1K9V3PhINACihmFC4trr3TylOPUAEhyO9fauaQ9uUrLyUz2HoTFWAfGsTjdwTwTXomQwS8O/cCDMufeED/9LBVfKfnhp64wt3vklcsOlgnIKlO/pdrddRl0MMvzLBDdl8OL99g+ppo/WkEE6u2HjgT8CGRpIqxOc3Rr7m7G6GRV9ILgPhq67QHrG7SqmIP6PTUt2nQjJ6liMxb47Vk1b/HNADKSzA5wXe2n1/D3nosgdJxIWeGy0mWz72934ms7T03VN1N0XE4qLez8soBcc0s+DVy4x2G5KcLyUh66TcOAg76iUOobG8Dj0yJkk7AAQ/Ca7tE6uSzIX6U4YBYI7n5UJFLzHD4hWGBBAOl+h0WSKbHsidtS1mDzJazZOO9Gt4FpgTlQYEgBRw/3ijewD85QlIYNBcJAD5iiF07qRK+fHrkCBw7CeBDZd2L7AkycXp59xcvo0LJn7VwSnm/iG/tAz+I5+tscbE5ztlCWnfavfRsFp2AJ6GGrV2MnTp1++X1ADFdZWl8hMLYo2C44ceOLrpStOekd3nALW9sXftOCW2jlEPpZ2FaNK8j+wbMP286FPMmugQkNSiJtspwDrLnmS+brIeJ9vF6/bdSkyI6tDZBJ21cJJwFdX/SlVnXMojLFf8unifTczn8l7fV++huDUz696Ei1AcE50Wl51ZY2I3g7n4VYn7FAQBEKT2WK9LzIeOY/DgkBIEktY4BlAGI0GARCc+/B5FTt2IwGzPDlf2Osl4t0KrlmZ/iMSOQCFWpKUZ5SwkMqjRS5AIgG0w8j7Wa3xfFhe5O5PsMKi3sNgV6fod6mVvWpcslvBNcsqi9JvDCWQtj0taD17OYUZZ4dEAjjizNiMGhH9pZgh7m1p0KFc91OrP1vv9LCXpfrX6NEoqoyfFvhfxITx1tYWI8ZNnvlLdMHLKopYanTxzIIjB5742k4/imqSNy64nfpRVNO8uO2wY+7EYe9bWltPGI/ozC6UX9ELSKuBtPygq5tmjRs+cmwXkXsJt8trTJyiyGvjoo/XoONS6l53CLITryG42uR9bvjhIDgYi0OQHCeYJCqVJ9ELjp/rP5mAHoD0D6yMXkvEjECjBoAg4B7pn+hhgcMcLaL1sgNO2xPBVT2wQSIBEByCI5hO2Nlp2qPnRruoOJSnPhNIjuNJ+JFoEHDAjo1MqxHRayWmR127Exynvu7JT6SOZx9HxA4DQQCFGoTFTyA5TvW+dqagoleloS6hJv6y5z+LLkT27STWnvI68+DkJaxHF9dOGDdhnNWH02bs9UoSSzoMMpgF97YLzva73+Lbxhy6gh90ddMs24Po1Arq6xVCPm7bouVHr0Wzhb0tz9cQXH3KQTfCCBCcHZfFEfdgslXd473O2KFI559j/UfjcCtveIx0QA9A3vw2BD0cG3RXyOxlB5y2J4KriVuhq8E9ed3+Sr5aVugW4DjRyXG8I2YwCmPh9yBXbKJN3bNBhg70fRO1ueZpisPW6UuPxvDfyom+LSquSlCmNH6mwTXZCVdtJk3/7IBfZlvJ/s2Ca1Zw1GK6xkTO777gGiUMtYxldE/3RHDVdx13L7DddflBYVnnPjKNmK5WtP5OXoSi7D632fdHcmmFiUgRTa3oaqZIku/2hesP4TOolb2cE/AagoPJaG+iJQgCIQllAnbHhFWsWhFNqOA3t1Uq4YrAW46WDiAAggAqKIwVt80JO0S3RMk7mmxKFq+LCcEpmVVCmqh1XVqzOuskCgmgUIPvZnR+vViLklktpIkNFrFp5IxqIUNu2O8JcyW8uK8cMYNRmLF+cRWd5ieaEBzMb1Iwq0WvGCPuc8HxGsru4HZPXWkf0C8dcNpuBSfjZUdf+eZaKavDdrgqPfbPDXMOefBb8+654ATlEcT902yOe/MMIltUhUWRZ3eaFlxxSfTFfV8s+zmi7SC8KvKjOC9SqYlS6zPBNclp4ur8qqpScWvr5pW8IcGlR13cstXuVOjz0taNHMrtawlJEZBRWA8EB1OeEnbY2n6NjkgUdLjFFfTn153in8e/1EcWpaA2LbTZTop7IuoYScvyxCcUpNR3cZaa2DPrP9v6Z1Tiy94tzXkdwVXci3CbiAEBt7B7L6gqo9YxV0oJn+JEOJJfITDoOM5OcEFgdUa7/0xU7H/LcQwaBEBw+L2nr+7Y6iGdBacuCgRAh3OVbTPbS6/7OQAgapD3/TzjM7aoWdU5/oNxjr/S9MHNKnZBsttQrCeeyzKyIcwRcaJtkeBIgs/1l90LrkVBp2b7jSa5oZhdXZo+FlyLilKecPnH+au9yW/rYnu4Jvshev2nP/u/rKW3P9lgXmNVaqrLgS9P+VW1Tdblpdw5tcSk4PZP+fzorfYOBRU3Mezs6rkrLj0WsloLgi0oveN1dPa4afOP+SbV1dCMq2Z0TjrpxKYFXxPvq1SQVgM1K8jkjJs3/FNM5dxXguOyEsCjiwBgxuqfbiaou3+nVUmu//HNm/tacJrSbK8D67btITxI171Xq1GSGH47OC2NbHRwuDAZs81mxysFp4G0JdfObpu19hQqvoSqap2F0CStbEjDgTeDn1bS2iOLPY5umrHhAjGlnKZuj6yoT0H95heaw6R3eQo46ebOxRsOE3pZietGcK53HtTQ1G3bWbHLPQmDUODs6NTcWmaj7mqqOQJh+nkXx4m+MZkCYzUwomYQMQNAcMTdtCopl/fsxjgcGgDRhwv6oANOq4HSYrCDUCDgEZkn57VooEY5/VYYcgguPNVgWUVTxZ3xOPQAFGpJErlKqndci4pV9TJ5L+gwITiJA7cJjkNJcQdQDiOvxzwTMNu+dQvMrqlK2IVEjXK6eauu4w2sltLu3kXrVjKUKflamC+uK3INxnzsHd31Ykp29YuEb5BIAEec9TC7t011mCelPfC/8NWai/1WfdN2L7iX2Qm/zHvPYsrCg9gcdi7EIUMcMkRLzgo4amezxiNHlze/UU5lZwQiN1pOm386llcolHC1GqhFxVHUpWfePbcB8cmSK8Evq6j6IpPml9w5ufyzeauvBuoOyMwJDXfZtfv8f3eMtJz44bwt3ztRjEtEwYwLOrNq8dofAnLJEIdckhwU7var8ctCeLCkoo5DhthPn4bY71wwc8N5t0I2GeIU1tUa6xLmqASlNRwyxE5L8Ttpt2CO3WXPIjYZ4uTXvqw0EFle5rX/rh4CAO9NXH0YndnpCdkKVyUoq+WQIXb07V/s5s1af/p6JMQhQ3yKSGS02LZRWsmKu/rjylU7L3gUNDBU0or8oCPbNyw9RrrNbqArRGU5foe3rl9+wj2cJzbaUZDlfG6zzfbzmAQKGeKQswOQIRGBZQ26TzmKupKXHDLEvuP5/bLpi/fg78RBHDLEL5GaWKEFaTVQXQp49KtpX3z3c+jjNF3hF4bZ7/nxvN+TzA5Dn7WJvx1YM2Xe91ci09J1kfkhp7cf+jkk67ni1XdVPvG7ld//EfEQknP/0nwRrlREz8sImElyAJDX0RX5DN3CKTVHIKJFx7p+hNetcCjgGazZggpCl14jjkajBgbFpfPLIAEVYsVtdSFOIl1zZFKlHZ5PcM7vrviRIOpQfqVICWkZkdMImAFINyybruiTtzNS700hYQAQ3J9bwW+gZiS6DsU7bs827kWF+Yws30nO+PdRqMHhKZCACjVUsqgRC9DYj9xuBtYa3G9qjrgwCABBAES/jwsJb6iEBFRIUMmoyrzkAQ4jusxNMvVUU7Kqi0InEhzedySeLqzkVBdFPHCxcPU8lmdi0KAF5sklVKiO8jw/dBYSCYDYD93vRDVQq0WMv1og/CZBdo7f8V3rTsf1U++bju4GGUSFlXfO2+z/Ixi1ctKHE1v5ZPGaY/e5bXlX8smkI62fzlyy6pf7+VoNpILSHvy2vHWXOet34gvbtCXNp9w5s6Z1l1krNiFjU2m5QV5/dlntqqeEOu3Tx9tu2xdS1CGsmHL/173tGbbx5XdnvCsMjylMT/E4tMxE5OztJ7CZBhMpX2S4/LZ94qT5m89fi27o8hGUm+71k13noy3cdiXIqC7GSUSe3aT7dM05p7DUR7+f/kr351p7V9+IwNN7F06c9OHESV/uxtxNEhufhRFz8cg6/ZG3XyZlcdp+JBkxv+5e2/nstgfcH6V1OV+k+p7rj2u/aAvefTk6r4sX570IJ+xbMactct/VHk7irYm137L72PXUdMlfaKjCBZ63fOY6kya1siH5GUvM1TY8vRDgMd1g+095pS/lhjvmOfl7zjIImOT/ILPjmmVdZEXYPY9Zrj7ObLpcDWnhXIyP23SnsOheT/Fth3pvskt7JtuyTI8RNamyLzkR2xN2cZp2q73upkfNlZaGTzL8Xq1M8XA/mFveZQ5KVlVRWFvwJ15eJu2m1UAKUXloFLHT8Z0X+L/qdW+voFlZyUx3RP2w0af/Gqc6zP90xswbodh3x09obGppCfwPeVWnmb6iWcmqygvyvLjqSnRBvydjFpyZN0Wx746zrr4U7r/63XD/QsTM+NA/174NdtOaBWfGjCm4IgGV31DJ6wECxT/tjXX/JsyCM2OmE3AuxsdthqvT5B5wqZxj+v+3mXkLMAvOjBkz7yxmwZkxY+ad5f8eIxcqLxmIWgAAAABJRU5ErkJggg==" alt="" width="319" height="26" />
9、shutil.move(src, dst)
递归的去移动文件
10、shutil.make_archive(base_name, format,...)
创建压缩包并返回文件路径,例如:zip、tar
base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
如:www =>保存至当前路径
如:/Users/wupeiqi/www =>保存至/Users/wupeiqi/
format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
root_dir: 要压缩的文件夹路径(默认当前目录)
owner: 用户,默认当前用户
group: 组,默认当前组
logger: 用于记录日志,通常是logging.Logger对象
- #将 /Users/wupeiqi/Downloads/test 下的文件打包放置当前程序目录
- import shutil
- ret = shutil.make_archive("wwwwwwwwww", 'gztar', root_dir='/Users/wupeiqi/Downloads/test')
- #将 /Users/wupeiqi/Downloads/test 下的文件打包放置 /Users/wupeiqi/目录
- import shutil
- ret = shutil.make_archive("/Users/wupeiqi/wwwwwwwwww", 'gztar', root_dir='/Users/wupeiqi/Downloads/test')
shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:
①、zipfile
- import zipfile
- # 压缩
- z = zipfile.ZipFile('laxi.zip', 'w')
- z.write('a.log')
- z.write('data.data')
- z.close()
- # 解压
- z = zipfile.ZipFile('laxi.zip', 'r')
- z.extractall()
- z.close()
②、tarfile
- import tarfile
- # 压缩
- tar = tarfile.open('your.tar','w')
- tar.add('/Users/wupeiqi/PycharmProjects/bbs2.zip', arcname='bbs2.zip')
- tar.add('/Users/wupeiqi/PycharmProjects/cmdb.zip', arcname='cmdb.zip')
- tar.close()
- # 解压
- tar = tarfile.open('your.tar','r')
- tar.extractall() # 可设置解压地址
- tar.close()
③、ZipFile
- class ZipFile(object):
- """ Class with methods to open, read, write, close, list zip files.
- z = ZipFile(file, mode="r", compression=ZIP_STORED, allowZip64=False)
- file: Either the path to the file, or a file-like object.
- If it is a path, the file will be opened and closed by ZipFile.
- mode: The mode can be either read "r", write "w" or append "a".
- compression: ZIP_STORED (no compression) or ZIP_DEFLATED (requires zlib).
- allowZip64: if True ZipFile will create files with ZIP64 extensions when
- needed, otherwise it will raise an exception when this would
- be necessary.
- """
- fp = None # Set here since __del__ checks it
- def __init__(self, file, mode="r", compression=ZIP_STORED, allowZip64=False):
- """Open the ZIP file with mode read "r", write "w" or append "a"."""
- if mode not in ("r", "w", "a"):
- raise RuntimeError('ZipFile() requires mode "r", "w", or "a"')
- if compression == ZIP_STORED:
- pass
- elif compression == ZIP_DEFLATED:
- if not zlib:
- raise RuntimeError,\
- "Compression requires the (missing) zlib module"
- else:
- raise RuntimeError, "That compression method is not supported"
- self._allowZip64 = allowZip64
- self._didModify = False
- self.debug = 0 # Level of printing: 0 through 3
- self.NameToInfo = {} # Find file info given name
- self.filelist = [] # List of ZipInfo instances for archive
- self.compression = compression # Method of compression
- self.mode = key = mode.replace('b', '')[0]
- self.pwd = None
- self._comment = ''
- # Check if we were passed a file-like object
- if isinstance(file, basestring):
- self._filePassed = 0
- self.filename = file
- modeDict = {'r' : 'rb', 'w': 'wb', 'a' : 'r+b'}
- try:
- self.fp = open(file, modeDict[mode])
- except IOError:
- if mode == 'a':
- mode = key = 'w'
- self.fp = open(file, modeDict[mode])
- else:
- raise
- else:
- self._filePassed = 1
- self.fp = file
- self.filename = getattr(file, 'name', None)
- try:
- if key == 'r':
- self._RealGetContents()
- elif key == 'w':
- # set the modified flag so central directory gets written
- # even if no files are added to the archive
- self._didModify = True
- elif key == 'a':
- try:
- # See if file is a zip file
- self._RealGetContents()
- # seek to start of directory and overwrite
- self.fp.seek(self.start_dir, 0)
- except BadZipfile:
- # file is not a zip file, just append
- self.fp.seek(0, 2)
- # set the modified flag so central directory gets written
- # even if no files are added to the archive
- self._didModify = True
- else:
- raise RuntimeError('Mode must be "r", "w" or "a"')
- except:
- fp = self.fp
- self.fp = None
- if not self._filePassed:
- fp.close()
- raise
- def __enter__(self):
- return self
- def __exit__(self, type, value, traceback):
- self.close()
- def _RealGetContents(self):
- """Read in the table of contents for the ZIP file."""
- fp = self.fp
- try:
- endrec = _EndRecData(fp)
- except IOError:
- raise BadZipfile("File is not a zip file")
- if not endrec:
- raise BadZipfile, "File is not a zip file"
- if self.debug > 1:
- print endrec
- size_cd = endrec[_ECD_SIZE] # bytes in central directory
- offset_cd = endrec[_ECD_OFFSET] # offset of central directory
- self._comment = endrec[_ECD_COMMENT] # archive comment
- # "concat" is zero, unless zip was concatenated to another file
- concat = endrec[_ECD_LOCATION] - size_cd - offset_cd
- if endrec[_ECD_SIGNATURE] == stringEndArchive64:
- # If Zip64 extension structures are present, account for them
- concat -= (sizeEndCentDir64 + sizeEndCentDir64Locator)
- if self.debug > 2:
- inferred = concat + offset_cd
- print "given, inferred, offset", offset_cd, inferred, concat
- # self.start_dir: Position of start of central directory
- self.start_dir = offset_cd + concat
- fp.seek(self.start_dir, 0)
- data = fp.read(size_cd)
- fp = cStringIO.StringIO(data)
- total = 0
- while total < size_cd:
- centdir = fp.read(sizeCentralDir)
- if len(centdir) != sizeCentralDir:
- raise BadZipfile("Truncated central directory")
- centdir = struct.unpack(structCentralDir, centdir)
- if centdir[_CD_SIGNATURE] != stringCentralDir:
- raise BadZipfile("Bad magic number for central directory")
- if self.debug > 2:
- print centdir
- filename = fp.read(centdir[_CD_FILENAME_LENGTH])
- # Create ZipInfo instance to store file information
- x = ZipInfo(filename)
- x.extra = fp.read(centdir[_CD_EXTRA_FIELD_LENGTH])
- x.comment = fp.read(centdir[_CD_COMMENT_LENGTH])
- x.header_offset = centdir[_CD_LOCAL_HEADER_OFFSET]
- (x.create_version, x.create_system, x.extract_version, x.reserved,
- x.flag_bits, x.compress_type, t, d,
- x.CRC, x.compress_size, x.file_size) = centdir[1:12]
- x.volume, x.internal_attr, x.external_attr = centdir[15:18]
- # Convert date/time code to (year, month, day, hour, min, sec)
- x._raw_time = t
- x.date_time = ( (d>>9)+1980, (d>>5)&0xF, d&0x1F,
- t>>11, (t>>5)&0x3F, (t&0x1F) * 2 )
- x._decodeExtra()
- x.header_offset = x.header_offset + concat
- x.filename = x._decodeFilename()
- self.filelist.append(x)
- self.NameToInfo[x.filename] = x
- # update total bytes read from central directory
- total = (total + sizeCentralDir + centdir[_CD_FILENAME_LENGTH]
- + centdir[_CD_EXTRA_FIELD_LENGTH]
- + centdir[_CD_COMMENT_LENGTH])
- if self.debug > 2:
- print "total", total
- def namelist(self):
- """Return a list of file names in the archive."""
- l = []
- for data in self.filelist:
- l.append(data.filename)
- return l
- def infolist(self):
- """Return a list of class ZipInfo instances for files in the
- archive."""
- return self.filelist
- def printdir(self):
- """Print a table of contents for the zip file."""
- print "%-46s %19s %12s" % ("File Name", "Modified ", "Size")
- for zinfo in self.filelist:
- date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time[:6]
- print "%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size)
- def testzip(self):
- """Read all the files and check the CRC."""
- chunk_size = 2 ** 20
- for zinfo in self.filelist:
- try:
- # Read by chunks, to avoid an OverflowError or a
- # MemoryError with very large embedded files.
- with self.open(zinfo.filename, "r") as f:
- while f.read(chunk_size): # Check CRC-32
- pass
- except BadZipfile:
- return zinfo.filename
- def getinfo(self, name):
- """Return the instance of ZipInfo given 'name'."""
- info = self.NameToInfo.get(name)
- if info is None:
- raise KeyError(
- 'There is no item named %r in the archive' % name)
- return info
- def setpassword(self, pwd):
- """Set default password for encrypted files."""
- self.pwd = pwd
- @property
- def comment(self):
- """The comment text associated with the ZIP file."""
- return self._comment
- @comment.setter
- def comment(self, comment):
- # check for valid comment length
- if len(comment) > ZIP_MAX_COMMENT:
- import warnings
- warnings.warn('Archive comment is too long; truncating to %d bytes'
- % ZIP_MAX_COMMENT, stacklevel=2)
- comment = comment[:ZIP_MAX_COMMENT]
- self._comment = comment
- self._didModify = True
- def read(self, name, pwd=None):
- """Return file bytes (as a string) for name."""
- return self.open(name, "r", pwd).read()
- def open(self, name, mode="r", pwd=None):
- """Return file-like object for 'name'."""
- if mode not in ("r", "U", "rU"):
- raise RuntimeError, 'open() requires mode "r", "U", or "rU"'
- if not self.fp:
- raise RuntimeError, \
- "Attempt to read ZIP archive that was already closed"
- # Only open a new file for instances where we were not
- # given a file object in the constructor
- if self._filePassed:
- zef_file = self.fp
- should_close = False
- else:
- zef_file = open(self.filename, 'rb')
- should_close = True
- try:
- # Make sure we have an info object
- if isinstance(name, ZipInfo):
- # 'name' is already an info object
- zinfo = name
- else:
- # Get info object for name
- zinfo = self.getinfo(name)
- zef_file.seek(zinfo.header_offset, 0)
- # Skip the file header:
- fheader = zef_file.read(sizeFileHeader)
- if len(fheader) != sizeFileHeader:
- raise BadZipfile("Truncated file header")
- fheader = struct.unpack(structFileHeader, fheader)
- if fheader[_FH_SIGNATURE] != stringFileHeader:
- raise BadZipfile("Bad magic number for file header")
- fname = zef_file.read(fheader[_FH_FILENAME_LENGTH])
- if fheader[_FH_EXTRA_FIELD_LENGTH]:
- zef_file.read(fheader[_FH_EXTRA_FIELD_LENGTH])
- if fname != zinfo.orig_filename:
- raise BadZipfile, \
- 'File name in directory "%s" and header "%s" differ.' % (
- zinfo.orig_filename, fname)
- # check for encrypted flag & handle password
- is_encrypted = zinfo.flag_bits & 0x1
- zd = None
- if is_encrypted:
- if not pwd:
- pwd = self.pwd
- if not pwd:
- raise RuntimeError, "File %s is encrypted, " \
- "password required for extraction" % name
- zd = _ZipDecrypter(pwd)
- # The first 12 bytes in the cypher stream is an encryption header
- # used to strengthen the algorithm. The first 11 bytes are
- # completely random, while the 12th contains the MSB of the CRC,
- # or the MSB of the file time depending on the header type
- # and is used to check the correctness of the password.
- bytes = zef_file.read(12)
- h = map(zd, bytes[0:12])
- if zinfo.flag_bits & 0x8:
- # compare against the file type from extended local headers
- check_byte = (zinfo._raw_time >> 8) & 0xff
- else:
- # compare against the CRC otherwise
- check_byte = (zinfo.CRC >> 24) & 0xff
- if ord(h[11]) != check_byte:
- raise RuntimeError("Bad password for file", name)
- return ZipExtFile(zef_file, mode, zinfo, zd,
- close_fileobj=should_close)
- except:
- if should_close:
- zef_file.close()
- raise
- def extract(self, member, path=None, pwd=None):
- """Extract a member from the archive to the current working directory,
- using its full name. Its file information is extracted as accurately
- as possible. `member' may be a filename or a ZipInfo object. You can
- specify a different directory using `path'.
- """
- if not isinstance(member, ZipInfo):
- member = self.getinfo(member)
- if path is None:
- path = os.getcwd()
- return self._extract_member(member, path, pwd)
- def extractall(self, path=None, members=None, pwd=None):
- """Extract all members from the archive to the current working
- directory. `path' specifies a different directory to extract to.
- `members' is optional and must be a subset of the list returned
- by namelist().
- """
- if members is None:
- members = self.namelist()
- for zipinfo in members:
- self.extract(zipinfo, path, pwd)
- def _extract_member(self, member, targetpath, pwd):
- """Extract the ZipInfo object 'member' to a physical
- file on the path targetpath.
- """
- # build the destination pathname, replacing
- # forward slashes to platform specific separators.
- arcname = member.filename.replace('/', os.path.sep)
- if os.path.altsep:
- arcname = arcname.replace(os.path.altsep, os.path.sep)
- # interpret absolute pathname as relative, remove drive letter or
- # UNC path, redundant separators, "." and ".." components.
- arcname = os.path.splitdrive(arcname)[1]
- arcname = os.path.sep.join(x for x in arcname.split(os.path.sep)
- if x not in ('', os.path.curdir, os.path.pardir))
- if os.path.sep == '\\':
- # filter illegal characters on Windows
- illegal = ':<>|"?*'
- if isinstance(arcname, unicode):
- table = {ord(c): ord('_') for c in illegal}
- else:
- table = string.maketrans(illegal, '_' * len(illegal))
- arcname = arcname.translate(table)
- # remove trailing dots
- arcname = (x.rstrip('.') for x in arcname.split(os.path.sep))
- arcname = os.path.sep.join(x for x in arcname if x)
- targetpath = os.path.join(targetpath, arcname)
- targetpath = os.path.normpath(targetpath)
- # Create all upper directories if necessary.
- upperdirs = os.path.dirname(targetpath)
- if upperdirs and not os.path.exists(upperdirs):
- os.makedirs(upperdirs)
- if member.filename[-1] == '/':
- if not os.path.isdir(targetpath):
- os.mkdir(targetpath)
- return targetpath
- with self.open(member, pwd=pwd) as source, \
- file(targetpath, "wb") as target:
- shutil.copyfileobj(source, target)
- return targetpath
- def _writecheck(self, zinfo):
- """Check for errors before writing a file to the archive."""
- if zinfo.filename in self.NameToInfo:
- import warnings
- warnings.warn('Duplicate name: %r' % zinfo.filename, stacklevel=3)
- if self.mode not in ("w", "a"):
- raise RuntimeError, 'write() requires mode "w" or "a"'
- if not self.fp:
- raise RuntimeError, \
- "Attempt to write ZIP archive that was already closed"
- if zinfo.compress_type == ZIP_DEFLATED and not zlib:
- raise RuntimeError, \
- "Compression requires the (missing) zlib module"
- if zinfo.compress_type not in (ZIP_STORED, ZIP_DEFLATED):
- raise RuntimeError, \
- "That compression method is not supported"
- if not self._allowZip64:
- requires_zip64 = None
- if len(self.filelist) >= ZIP_FILECOUNT_LIMIT:
- requires_zip64 = "Files count"
- elif zinfo.file_size > ZIP64_LIMIT:
- requires_zip64 = "Filesize"
- elif zinfo.header_offset > ZIP64_LIMIT:
- requires_zip64 = "Zipfile size"
- if requires_zip64:
- raise LargeZipFile(requires_zip64 +
- " would require ZIP64 extensions")
- def write(self, filename, arcname=None, compress_type=None):
- """Put the bytes from filename into the archive under the name
- arcname."""
- if not self.fp:
- raise RuntimeError(
- "Attempt to write to ZIP archive that was already closed")
- st = os.stat(filename)
- isdir = stat.S_ISDIR(st.st_mode)
- mtime = time.localtime(st.st_mtime)
- date_time = mtime[0:6]
- # Create ZipInfo instance to store file information
- if arcname is None:
- arcname = filename
- arcname = os.path.normpath(os.path.splitdrive(arcname)[1])
- while arcname[0] in (os.sep, os.altsep):
- arcname = arcname[1:]
- if isdir:
- arcname += '/'
- zinfo = ZipInfo(arcname, date_time)
- zinfo.external_attr = (st[0] & 0xFFFF) << 16L # Unix attributes
- if compress_type is None:
- zinfo.compress_type = self.compression
- else:
- zinfo.compress_type = compress_type
- zinfo.file_size = st.st_size
- zinfo.flag_bits = 0x00
- zinfo.header_offset = self.fp.tell() # Start of header bytes
- self._writecheck(zinfo)
- self._didModify = True
- if isdir:
- zinfo.file_size = 0
- zinfo.compress_size = 0
- zinfo.CRC = 0
- zinfo.external_attr |= 0x10 # MS-DOS directory flag
- self.filelist.append(zinfo)
- self.NameToInfo[zinfo.filename] = zinfo
- self.fp.write(zinfo.FileHeader(False))
- return
- with open(filename, "rb") as fp:
- # Must overwrite CRC and sizes with correct data later
- zinfo.CRC = CRC = 0
- zinfo.compress_size = compress_size = 0
- # Compressed size can be larger than uncompressed size
- zip64 = self._allowZip64 and \
- zinfo.file_size * 1.05 > ZIP64_LIMIT
- self.fp.write(zinfo.FileHeader(zip64))
- if zinfo.compress_type == ZIP_DEFLATED:
- cmpr = zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION,
- zlib.DEFLATED, -15)
- else:
- cmpr = None
- file_size = 0
- while 1:
- buf = fp.read(1024 * 8)
- if not buf:
- break
- file_size = file_size + len(buf)
- CRC = crc32(buf, CRC) & 0xffffffff
- if cmpr:
- buf = cmpr.compress(buf)
- compress_size = compress_size + len(buf)
- self.fp.write(buf)
- if cmpr:
- buf = cmpr.flush()
- compress_size = compress_size + len(buf)
- self.fp.write(buf)
- zinfo.compress_size = compress_size
- else:
- zinfo.compress_size = file_size
- zinfo.CRC = CRC
- zinfo.file_size = file_size
- if not zip64 and self._allowZip64:
- if file_size > ZIP64_LIMIT:
- raise RuntimeError('File size has increased during compressing')
- if compress_size > ZIP64_LIMIT:
- raise RuntimeError('Compressed size larger than uncompressed size')
- # Seek backwards and write file header (which will now include
- # correct CRC and file sizes)
- position = self.fp.tell() # Preserve current position in file
- self.fp.seek(zinfo.header_offset, 0)
- self.fp.write(zinfo.FileHeader(zip64))
- self.fp.seek(position, 0)
- self.filelist.append(zinfo)
- self.NameToInfo[zinfo.filename] = zinfo
- def writestr(self, zinfo_or_arcname, bytes, compress_type=None):
- """Write a file into the archive. The contents is the string
- 'bytes'. 'zinfo_or_arcname' is either a ZipInfo instance or
- the name of the file in the archive."""
- if not isinstance(zinfo_or_arcname, ZipInfo):
- zinfo = ZipInfo(filename=zinfo_or_arcname,
- date_time=time.localtime(time.time())[:6])
- zinfo.compress_type = self.compression
- if zinfo.filename[-1] == '/':
- zinfo.external_attr = 0o40775 << 16 # drwxrwxr-x
- zinfo.external_attr |= 0x10 # MS-DOS directory flag
- else:
- zinfo.external_attr = 0o600 << 16 # ?rw-------
- else:
- zinfo = zinfo_or_arcname
- if not self.fp:
- raise RuntimeError(
- "Attempt to write to ZIP archive that was already closed")
- if compress_type is not None:
- zinfo.compress_type = compress_type
- zinfo.file_size = len(bytes) # Uncompressed size
- zinfo.header_offset = self.fp.tell() # Start of header bytes
- self._writecheck(zinfo)
- self._didModify = True
- zinfo.CRC = crc32(bytes) & 0xffffffff # CRC-32 checksum
- if zinfo.compress_type == ZIP_DEFLATED:
- co = zlib.compressobj(zlib.Z_DEFAULT_COMPRESSION,
- zlib.DEFLATED, -15)
- bytes = co.compress(bytes) + co.flush()
- zinfo.compress_size = len(bytes) # Compressed size
- else:
- zinfo.compress_size = zinfo.file_size
- zip64 = zinfo.file_size > ZIP64_LIMIT or \
- zinfo.compress_size > ZIP64_LIMIT
- if zip64 and not self._allowZip64:
- raise LargeZipFile("Filesize would require ZIP64 extensions")
- self.fp.write(zinfo.FileHeader(zip64))
- self.fp.write(bytes)
- if zinfo.flag_bits & 0x08:
- # Write CRC and file sizes after the file data
- fmt = '<LQQ' if zip64 else '<LLL'
- self.fp.write(struct.pack(fmt, zinfo.CRC, zinfo.compress_size,
- zinfo.file_size))
- self.fp.flush()
- self.filelist.append(zinfo)
- self.NameToInfo[zinfo.filename] = zinfo
- def __del__(self):
- """Call the "close()" method in case the user forgot."""
- self.close()
- def close(self):
- """Close the file, and for mode "w" and "a" write the ending
- records."""
- if self.fp is None:
- return
- try:
- if self.mode in ("w", "a") and self._didModify: # write ending records
- pos1 = self.fp.tell()
- for zinfo in self.filelist: # write central directory
- dt = zinfo.date_time
- dosdate = (dt[0] - 1980) << 9 | dt[1] << 5 | dt[2]
- dostime = dt[3] << 11 | dt[4] << 5 | (dt[5] // 2)
- extra = []
- if zinfo.file_size > ZIP64_LIMIT \
- or zinfo.compress_size > ZIP64_LIMIT:
- extra.append(zinfo.file_size)
- extra.append(zinfo.compress_size)
- file_size = 0xffffffff
- compress_size = 0xffffffff
- else:
- file_size = zinfo.file_size
- compress_size = zinfo.compress_size
- if zinfo.header_offset > ZIP64_LIMIT:
- extra.append(zinfo.header_offset)
- header_offset = 0xffffffffL
- else:
- header_offset = zinfo.header_offset
- extra_data = zinfo.extra
- if extra:
- # Append a ZIP64 field to the extra's
- extra_data = struct.pack(
- '<HH' + 'Q'*len(extra),
- 1, 8*len(extra), *extra) + extra_data
- extract_version = max(45, zinfo.extract_version)
- create_version = max(45, zinfo.create_version)
- else:
- extract_version = zinfo.extract_version
- create_version = zinfo.create_version
- try:
- filename, flag_bits = zinfo._encodeFilenameFlags()
- centdir = struct.pack(structCentralDir,
- stringCentralDir, create_version,
- zinfo.create_system, extract_version, zinfo.reserved,
- flag_bits, zinfo.compress_type, dostime, dosdate,
- zinfo.CRC, compress_size, file_size,
- len(filename), len(extra_data), len(zinfo.comment),
- 0, zinfo.internal_attr, zinfo.external_attr,
- header_offset)
- except DeprecationWarning:
- print >>sys.stderr, (structCentralDir,
- stringCentralDir, create_version,
- zinfo.create_system, extract_version, zinfo.reserved,
- zinfo.flag_bits, zinfo.compress_type, dostime, dosdate,
- zinfo.CRC, compress_size, file_size,
- len(zinfo.filename), len(extra_data), len(zinfo.comment),
- 0, zinfo.internal_attr, zinfo.external_attr,
- header_offset)
- raise
- self.fp.write(centdir)
- self.fp.write(filename)
- self.fp.write(extra_data)
- self.fp.write(zinfo.comment)
- pos2 = self.fp.tell()
- # Write end-of-zip-archive record
- centDirCount = len(self.filelist)
- centDirSize = pos2 - pos1
- centDirOffset = pos1
- requires_zip64 = None
- if centDirCount > ZIP_FILECOUNT_LIMIT:
- requires_zip64 = "Files count"
- elif centDirOffset > ZIP64_LIMIT:
- requires_zip64 = "Central directory offset"
- elif centDirSize > ZIP64_LIMIT:
- requires_zip64 = "Central directory size"
- if requires_zip64:
- # Need to write the ZIP64 end-of-archive records
- if not self._allowZip64:
- raise LargeZipFile(requires_zip64 +
- " would require ZIP64 extensions")
- zip64endrec = struct.pack(
- structEndArchive64, stringEndArchive64,
- 44, 45, 45, 0, 0, centDirCount, centDirCount,
- centDirSize, centDirOffset)
- self.fp.write(zip64endrec)
- zip64locrec = struct.pack(
- structEndArchive64Locator,
- stringEndArchive64Locator, 0, pos2, 1)
- self.fp.write(zip64locrec)
- centDirCount = min(centDirCount, 0xFFFF)
- centDirSize = min(centDirSize, 0xFFFFFFFF)
- centDirOffset = min(centDirOffset, 0xFFFFFFFF)
- endrec = struct.pack(structEndArchive, stringEndArchive,
- 0, 0, centDirCount, centDirCount,
- centDirSize, centDirOffset, len(self._comment))
- self.fp.write(endrec)
- self.fp.write(self._comment)
- self.fp.flush()
- finally:
- fp = self.fp
- self.fp = None
- if not self._filePassed:
- fp.close()
④、TarFile
- class TarFile(object):
- """The TarFile Class provides an interface to tar archives.
- """
- debug = 0 # May be set from 0 (no msgs) to 3 (all msgs)
- dereference = False # If true, add content of linked file to the
- # tar file, else the link.
- ignore_zeros = False # If true, skips empty or invalid blocks and
- # continues processing.
- errorlevel = 1 # If 0, fatal errors only appear in debug
- # messages (if debug >= 0). If > 0, errors
- # are passed to the caller as exceptions.
- format = DEFAULT_FORMAT # The format to use when creating an archive.
- encoding = ENCODING # Encoding for 8-bit character strings.
- errors = None # Error handler for unicode conversion.
- tarinfo = TarInfo # The default TarInfo class to use.
- fileobject = ExFileObject # The default ExFileObject class to use.
- def __init__(self, name=None, mode="r", fileobj=None, format=None,
- tarinfo=None, dereference=None, ignore_zeros=None, encoding=None,
- errors=None, pax_headers=None, debug=None, errorlevel=None):
- """Open an (uncompressed) tar archive `name'. `mode' is either 'r' to
- read from an existing archive, 'a' to append data to an existing
- file or 'w' to create a new file overwriting an existing one. `mode'
- defaults to 'r'.
- If `fileobj' is given, it is used for reading or writing data. If it
- can be determined, `mode' is overridden by `fileobj's mode.
- `fileobj' is not closed, when TarFile is closed.
- """
- modes = {"r": "rb", "a": "r+b", "w": "wb"}
- if mode not in modes:
- raise ValueError("mode must be 'r', 'a' or 'w'")
- self.mode = mode
- self._mode = modes[mode]
- if not fileobj:
- if self.mode == "a" and not os.path.exists(name):
- # Create nonexistent files in append mode.
- self.mode = "w"
- self._mode = "wb"
- fileobj = bltn_open(name, self._mode)
- self._extfileobj = False
- else:
- if name is None and hasattr(fileobj, "name"):
- name = fileobj.name
- if hasattr(fileobj, "mode"):
- self._mode = fileobj.mode
- self._extfileobj = True
- self.name = os.path.abspath(name) if name else None
- self.fileobj = fileobj
- # Init attributes.
- if format is not None:
- self.format = format
- if tarinfo is not None:
- self.tarinfo = tarinfo
- if dereference is not None:
- self.dereference = dereference
- if ignore_zeros is not None:
- self.ignore_zeros = ignore_zeros
- if encoding is not None:
- self.encoding = encoding
- if errors is not None:
- self.errors = errors
- elif mode == "r":
- self.errors = "utf-8"
- else:
- self.errors = "strict"
- if pax_headers is not None and self.format == PAX_FORMAT:
- self.pax_headers = pax_headers
- else:
- self.pax_headers = {}
- if debug is not None:
- self.debug = debug
- if errorlevel is not None:
- self.errorlevel = errorlevel
- # Init datastructures.
- self.closed = False
- self.members = [] # list of members as TarInfo objects
- self._loaded = False # flag if all members have been read
- self.offset = self.fileobj.tell()
- # current position in the archive file
- self.inodes = {} # dictionary caching the inodes of
- # archive members already added
- try:
- if self.mode == "r":
- self.firstmember = None
- self.firstmember = self.next()
- if self.mode == "a":
- # Move to the end of the archive,
- # before the first empty block.
- while True:
- self.fileobj.seek(self.offset)
- try:
- tarinfo = self.tarinfo.fromtarfile(self)
- self.members.append(tarinfo)
- except EOFHeaderError:
- self.fileobj.seek(self.offset)
- break
- except HeaderError, e:
- raise ReadError(str(e))
- if self.mode in "aw":
- self._loaded = True
- if self.pax_headers:
- buf = self.tarinfo.create_pax_global_header(self.pax_headers.copy())
- self.fileobj.write(buf)
- self.offset += len(buf)
- except:
- if not self._extfileobj:
- self.fileobj.close()
- self.closed = True
- raise
- def _getposix(self):
- return self.format == USTAR_FORMAT
- def _setposix(self, value):
- import warnings
- warnings.warn("use the format attribute instead", DeprecationWarning,
- 2)
- if value:
- self.format = USTAR_FORMAT
- else:
- self.format = GNU_FORMAT
- posix = property(_getposix, _setposix)
- #--------------------------------------------------------------------------
- # Below are the classmethods which act as alternate constructors to the
- # TarFile class. The open() method is the only one that is needed for
- # public use; it is the "super"-constructor and is able to select an
- # adequate "sub"-constructor for a particular compression using the mapping
- # from OPEN_METH.
- #
- # This concept allows one to subclass TarFile without losing the comfort of
- # the super-constructor. A sub-constructor is registered and made available
- # by adding it to the mapping in OPEN_METH.
- @classmethod
- def open(cls, name=None, mode="r", fileobj=None, bufsize=RECORDSIZE, **kwargs):
- """Open a tar archive for reading, writing or appending. Return
- an appropriate TarFile class.
- mode:
- 'r' or 'r:*' open for reading with transparent compression
- 'r:' open for reading exclusively uncompressed
- 'r:gz' open for reading with gzip compression
- 'r:bz2' open for reading with bzip2 compression
- 'a' or 'a:' open for appending, creating the file if necessary
- 'w' or 'w:' open for writing without compression
- 'w:gz' open for writing with gzip compression
- 'w:bz2' open for writing with bzip2 compression
- 'r|*' open a stream of tar blocks with transparent compression
- 'r|' open an uncompressed stream of tar blocks for reading
- 'r|gz' open a gzip compressed stream of tar blocks
- 'r|bz2' open a bzip2 compressed stream of tar blocks
- 'w|' open an uncompressed stream for writing
- 'w|gz' open a gzip compressed stream for writing
- 'w|bz2' open a bzip2 compressed stream for writing
- """
- if not name and not fileobj:
- raise ValueError("nothing to open")
- if mode in ("r", "r:*"):
- # Find out which *open() is appropriate for opening the file.
- for comptype in cls.OPEN_METH:
- func = getattr(cls, cls.OPEN_METH[comptype])
- if fileobj is not None:
- saved_pos = fileobj.tell()
- try:
- return func(name, "r", fileobj, **kwargs)
- except (ReadError, CompressionError), e:
- if fileobj is not None:
- fileobj.seek(saved_pos)
- continue
- raise ReadError("file could not be opened successfully")
- elif ":" in mode:
- filemode, comptype = mode.split(":", 1)
- filemode = filemode or "r"
- comptype = comptype or "tar"
- # Select the *open() function according to
- # given compression.
- if comptype in cls.OPEN_METH:
- func = getattr(cls, cls.OPEN_METH[comptype])
- else:
- raise CompressionError("unknown compression type %r" % comptype)
- return func(name, filemode, fileobj, **kwargs)
- elif "|" in mode:
- filemode, comptype = mode.split("|", 1)
- filemode = filemode or "r"
- comptype = comptype or "tar"
- if filemode not in ("r", "w"):
- raise ValueError("mode must be 'r' or 'w'")
- stream = _Stream(name, filemode, comptype, fileobj, bufsize)
- try:
- t = cls(name, filemode, stream, **kwargs)
- except:
- stream.close()
- raise
- t._extfileobj = False
- return t
- elif mode in ("a", "w"):
- return cls.taropen(name, mode, fileobj, **kwargs)
- raise ValueError("undiscernible mode")
- @classmethod
- def taropen(cls, name, mode="r", fileobj=None, **kwargs):
- """Open uncompressed tar archive name for reading or writing.
- """
- if mode not in ("r", "a", "w"):
- raise ValueError("mode must be 'r', 'a' or 'w'")
- return cls(name, mode, fileobj, **kwargs)
- @classmethod
- def gzopen(cls, name, mode="r", fileobj=None, compresslevel=9, **kwargs):
- """Open gzip compressed tar archive name for reading or writing.
- Appending is not allowed.
- """
- if mode not in ("r", "w"):
- raise ValueError("mode must be 'r' or 'w'")
- try:
- import gzip
- gzip.GzipFile
- except (ImportError, AttributeError):
- raise CompressionError("gzip module is not available")
- try:
- fileobj = gzip.GzipFile(name, mode, compresslevel, fileobj)
- except OSError:
- if fileobj is not None and mode == 'r':
- raise ReadError("not a gzip file")
- raise
- try:
- t = cls.taropen(name, mode, fileobj, **kwargs)
- except IOError:
- fileobj.close()
- if mode == 'r':
- raise ReadError("not a gzip file")
- raise
- except:
- fileobj.close()
- raise
- t._extfileobj = False
- return t
- @classmethod
- def bz2open(cls, name, mode="r", fileobj=None, compresslevel=9, **kwargs):
- """Open bzip2 compressed tar archive name for reading or writing.
- Appending is not allowed.
- """
- if mode not in ("r", "w"):
- raise ValueError("mode must be 'r' or 'w'.")
- try:
- import bz2
- except ImportError:
- raise CompressionError("bz2 module is not available")
- if fileobj is not None:
- fileobj = _BZ2Proxy(fileobj, mode)
- else:
- fileobj = bz2.BZ2File(name, mode, compresslevel=compresslevel)
- try:
- t = cls.taropen(name, mode, fileobj, **kwargs)
- except (IOError, EOFError):
- fileobj.close()
- if mode == 'r':
- raise ReadError("not a bzip2 file")
- raise
- except:
- fileobj.close()
- raise
- t._extfileobj = False
- return t
- # All *open() methods are registered here.
- OPEN_METH = {
- "tar": "taropen", # uncompressed tar
- "gz": "gzopen", # gzip compressed tar
- "bz2": "bz2open" # bzip2 compressed tar
- }
- #--------------------------------------------------------------------------
- # The public methods which TarFile provides:
- def close(self):
- """Close the TarFile. In write-mode, two finishing zero blocks are
- appended to the archive.
- """
- if self.closed:
- return
- if self.mode in "aw":
- self.fileobj.write(NUL * (BLOCKSIZE * 2))
- self.offset += (BLOCKSIZE * 2)
- # fill up the end with zero-blocks
- # (like option -b20 for tar does)
- blocks, remainder = divmod(self.offset, RECORDSIZE)
- if remainder > 0:
- self.fileobj.write(NUL * (RECORDSIZE - remainder))
- if not self._extfileobj:
- self.fileobj.close()
- self.closed = True
- def getmember(self, name):
- """Return a TarInfo object for member `name'. If `name' can not be
- found in the archive, KeyError is raised. If a member occurs more
- than once in the archive, its last occurrence is assumed to be the
- most up-to-date version.
- """
- tarinfo = self._getmember(name)
- if tarinfo is None:
- raise KeyError("filename %r not found" % name)
- return tarinfo
- def getmembers(self):
- """Return the members of the archive as a list of TarInfo objects. The
- list has the same order as the members in the archive.
- """
- self._check()
- if not self._loaded: # if we want to obtain a list of
- self._load() # all members, we first have to
- # scan the whole archive.
- return self.members
- def getnames(self):
- """Return the members of the archive as a list of their names. It has
- the same order as the list returned by getmembers().
- """
- return [tarinfo.name for tarinfo in self.getmembers()]
- def gettarinfo(self, name=None, arcname=None, fileobj=None):
- """Create a TarInfo object for either the file `name' or the file
- object `fileobj' (using os.fstat on its file descriptor). You can
- modify some of the TarInfo's attributes before you add it using
- addfile(). If given, `arcname' specifies an alternative name for the
- file in the archive.
- """
- self._check("aw")
- # When fileobj is given, replace name by
- # fileobj's real name.
- if fileobj is not None:
- name = fileobj.name
- # Building the name of the member in the archive.
- # Backward slashes are converted to forward slashes,
- # Absolute paths are turned to relative paths.
- if arcname is None:
- arcname = name
- drv, arcname = os.path.splitdrive(arcname)
- arcname = arcname.replace(os.sep, "/")
- arcname = arcname.lstrip("/")
- # Now, fill the TarInfo object with
- # information specific for the file.
- tarinfo = self.tarinfo()
- tarinfo.tarfile = self
- # Use os.stat or os.lstat, depending on platform
- # and if symlinks shall be resolved.
- if fileobj is None:
- if hasattr(os, "lstat") and not self.dereference:
- statres = os.lstat(name)
- else:
- statres = os.stat(name)
- else:
- statres = os.fstat(fileobj.fileno())
- linkname = ""
- stmd = statres.st_mode
- if stat.S_ISREG(stmd):
- inode = (statres.st_ino, statres.st_dev)
- if not self.dereference and statres.st_nlink > 1 and \
- inode in self.inodes and arcname != self.inodes[inode]:
- # Is it a hardlink to an already
- # archived file?
- type = LNKTYPE
- linkname = self.inodes[inode]
- else:
- # The inode is added only if its valid.
- # For win32 it is always 0.
- type = REGTYPE
- if inode[0]:
- self.inodes[inode] = arcname
- elif stat.S_ISDIR(stmd):
- type = DIRTYPE
- elif stat.S_ISFIFO(stmd):
- type = FIFOTYPE
- elif stat.S_ISLNK(stmd):
- type = SYMTYPE
- linkname = os.readlink(name)
- elif stat.S_ISCHR(stmd):
- type = CHRTYPE
- elif stat.S_ISBLK(stmd):
- type = BLKTYPE
- else:
- return None
- # Fill the TarInfo object with all
- # information we can get.
- tarinfo.name = arcname
- tarinfo.mode = stmd
- tarinfo.uid = statres.st_uid
- tarinfo.gid = statres.st_gid
- if type == REGTYPE:
- tarinfo.size = statres.st_size
- else:
- tarinfo.size = 0L
- tarinfo.mtime = statres.st_mtime
- tarinfo.type = type
- tarinfo.linkname = linkname
- if pwd:
- try:
- tarinfo.uname = pwd.getpwuid(tarinfo.uid)[0]
- except KeyError:
- pass
- if grp:
- try:
- tarinfo.gname = grp.getgrgid(tarinfo.gid)[0]
- except KeyError:
- pass
- if type in (CHRTYPE, BLKTYPE):
- if hasattr(os, "major") and hasattr(os, "minor"):
- tarinfo.devmajor = os.major(statres.st_rdev)
- tarinfo.devminor = os.minor(statres.st_rdev)
- return tarinfo
- def list(self, verbose=True):
- """Print a table of contents to sys.stdout. If `verbose' is False, only
- the names of the members are printed. If it is True, an `ls -l'-like
- output is produced.
- """
- self._check()
- for tarinfo in self:
- if verbose:
- print filemode(tarinfo.mode),
- print "%s/%s" % (tarinfo.uname or tarinfo.uid,
- tarinfo.gname or tarinfo.gid),
- if tarinfo.ischr() or tarinfo.isblk():
- print "%10s" % ("%d,%d" \
- % (tarinfo.devmajor, tarinfo.devminor)),
- else:
- print "%10d" % tarinfo.size,
- print "%d-%02d-%02d %02d:%02d:%02d" \
- % time.localtime(tarinfo.mtime)[:6],
- print tarinfo.name + ("/" if tarinfo.isdir() else ""),
- if verbose:
- if tarinfo.issym():
- print "->", tarinfo.linkname,
- if tarinfo.islnk():
- print "link to", tarinfo.linkname,
- def add(self, name, arcname=None, recursive=True, exclude=None, filter=None):
- """Add the file `name' to the archive. `name' may be any type of file
- (directory, fifo, symbolic link, etc.). If given, `arcname'
- specifies an alternative name for the file in the archive.
- Directories are added recursively by default. This can be avoided by
- setting `recursive' to False. `exclude' is a function that should
- return True for each filename to be excluded. `filter' is a function
- that expects a TarInfo object argument and returns the changed
- TarInfo object, if it returns None the TarInfo object will be
- excluded from the archive.
- """
- self._check("aw")
- if arcname is None:
- arcname = name
- # Exclude pathnames.
- if exclude is not None:
- import warnings
- warnings.warn("use the filter argument instead",
- DeprecationWarning, 2)
- if exclude(name):
- self._dbg(2, "tarfile: Excluded %r" % name)
- return
- # Skip if somebody tries to archive the archive...
- if self.name is not None and os.path.abspath(name) == self.name:
- self._dbg(2, "tarfile: Skipped %r" % name)
- return
- self._dbg(1, name)
- # Create a TarInfo object from the file.
- tarinfo = self.gettarinfo(name, arcname)
- if tarinfo is None:
- self._dbg(1, "tarfile: Unsupported type %r" % name)
- return
- # Change or exclude the TarInfo object.
- if filter is not None:
- tarinfo = filter(tarinfo)
- if tarinfo is None:
- self._dbg(2, "tarfile: Excluded %r" % name)
- return
- # Append the tar header and data to the archive.
- if tarinfo.isreg():
- with bltn_open(name, "rb") as f:
- self.addfile(tarinfo, f)
- elif tarinfo.isdir():
- self.addfile(tarinfo)
- if recursive:
- for f in os.listdir(name):
- self.add(os.path.join(name, f), os.path.join(arcname, f),
- recursive, exclude, filter)
- else:
- self.addfile(tarinfo)
- def addfile(self, tarinfo, fileobj=None):
- """Add the TarInfo object `tarinfo' to the archive. If `fileobj' is
- given, tarinfo.size bytes are read from it and added to the archive.
- You can create TarInfo objects using gettarinfo().
- On Windows platforms, `fileobj' should always be opened with mode
- 'rb' to avoid irritation about the file size.
- """
- self._check("aw")
- tarinfo = copy.copy(tarinfo)
- buf = tarinfo.tobuf(self.format, self.encoding, self.errors)
- self.fileobj.write(buf)
- self.offset += len(buf)
- # If there's data to follow, append it.
- if fileobj is not None:
- copyfileobj(fileobj, self.fileobj, tarinfo.size)
- blocks, remainder = divmod(tarinfo.size, BLOCKSIZE)
- if remainder > 0:
- self.fileobj.write(NUL * (BLOCKSIZE - remainder))
- blocks += 1
- self.offset += blocks * BLOCKSIZE
- self.members.append(tarinfo)
- def extractall(self, path=".", members=None):
- """Extract all members from the archive to the current working
- directory and set owner, modification time and permissions on
- directories afterwards. `path' specifies a different directory
- to extract to. `members' is optional and must be a subset of the
- list returned by getmembers().
- """
- directories = []
- if members is None:
- members = self
- for tarinfo in members:
- if tarinfo.isdir():
- # Extract directories with a safe mode.
- directories.append(tarinfo)
- tarinfo = copy.copy(tarinfo)
- tarinfo.mode = 0700
- self.extract(tarinfo, path)
- # Reverse sort directories.
- directories.sort(key=operator.attrgetter('name'))
- directories.reverse()
- # Set correct owner, mtime and filemode on directories.
- for tarinfo in directories:
- dirpath = os.path.join(path, tarinfo.name)
- try:
- self.chown(tarinfo, dirpath)
- self.utime(tarinfo, dirpath)
- self.chmod(tarinfo, dirpath)
- except ExtractError, e:
- if self.errorlevel > 1:
- raise
- else:
- self._dbg(1, "tarfile: %s" % e)
- def extract(self, member, path=""):
- """Extract a member from the archive to the current working directory,
- using its full name. Its file information is extracted as accurately
- as possible. `member' may be a filename or a TarInfo object. You can
- specify a different directory using `path'.
- """
- self._check("r")
- if isinstance(member, basestring):
- tarinfo = self.getmember(member)
- else:
- tarinfo = member
- # Prepare the link target for makelink().
- if tarinfo.islnk():
- tarinfo._link_target = os.path.join(path, tarinfo.linkname)
- try:
- self._extract_member(tarinfo, os.path.join(path, tarinfo.name))
- except EnvironmentError, e:
- if self.errorlevel > 0:
- raise
- else:
- if e.filename is None:
- self._dbg(1, "tarfile: %s" % e.strerror)
- else:
- self._dbg(1, "tarfile: %s %r" % (e.strerror, e.filename))
- except ExtractError, e:
- if self.errorlevel > 1:
- raise
- else:
- self._dbg(1, "tarfile: %s" % e)
- def extractfile(self, member):
- """Extract a member from the archive as a file object. `member' may be
- a filename or a TarInfo object. If `member' is a regular file, a
- file-like object is returned. If `member' is a link, a file-like
- object is constructed from the link's target. If `member' is none of
- the above, None is returned.
- The file-like object is read-only and provides the following
- methods: read(), readline(), readlines(), seek() and tell()
- """
- self._check("r")
- if isinstance(member, basestring):
- tarinfo = self.getmember(member)
- else:
- tarinfo = member
- if tarinfo.isreg():
- return self.fileobject(self, tarinfo)
- elif tarinfo.type not in SUPPORTED_TYPES:
- # If a member's type is unknown, it is treated as a
- # regular file.
- return self.fileobject(self, tarinfo)
- elif tarinfo.islnk() or tarinfo.issym():
- if isinstance(self.fileobj, _Stream):
- # A small but ugly workaround for the case that someone tries
- # to extract a (sym)link as a file-object from a non-seekable
- # stream of tar blocks.
- raise StreamError("cannot extract (sym)link as file object")
- else:
- # A (sym)link's file object is its target's file object.
- return self.extractfile(self._find_link_target(tarinfo))
- else:
- # If there's no data associated with the member (directory, chrdev,
- # blkdev, etc.), return None instead of a file object.
- return None
- def _extract_member(self, tarinfo, targetpath):
- """Extract the TarInfo object tarinfo to a physical
- file called targetpath.
- """
- # Fetch the TarInfo object for the given name
- # and build the destination pathname, replacing
- # forward slashes to platform specific separators.
- targetpath = targetpath.rstrip("/")
- targetpath = targetpath.replace("/", os.sep)
- # Create all upper directories.
- upperdirs = os.path.dirname(targetpath)
- if upperdirs and not os.path.exists(upperdirs):
- # Create directories that are not part of the archive with
- # default permissions.
- os.makedirs(upperdirs)
- if tarinfo.islnk() or tarinfo.issym():
- self._dbg(1, "%s -> %s" % (tarinfo.name, tarinfo.linkname))
- else:
- self._dbg(1, tarinfo.name)
- if tarinfo.isreg():
- self.makefile(tarinfo, targetpath)
- elif tarinfo.isdir():
- self.makedir(tarinfo, targetpath)
- elif tarinfo.isfifo():
- self.makefifo(tarinfo, targetpath)
- elif tarinfo.ischr() or tarinfo.isblk():
- self.makedev(tarinfo, targetpath)
- elif tarinfo.islnk() or tarinfo.issym():
- self.makelink(tarinfo, targetpath)
- elif tarinfo.type not in SUPPORTED_TYPES:
- self.makeunknown(tarinfo, targetpath)
- else:
- self.makefile(tarinfo, targetpath)
- self.chown(tarinfo, targetpath)
- if not tarinfo.issym():
- self.chmod(tarinfo, targetpath)
- self.utime(tarinfo, targetpath)
- #--------------------------------------------------------------------------
- # Below are the different file methods. They are called via
- # _extract_member() when extract() is called. They can be replaced in a
- # subclass to implement other functionality.
- def makedir(self, tarinfo, targetpath):
- """Make a directory called targetpath.
- """
- try:
- # Use a safe mode for the directory, the real mode is set
- # later in _extract_member().
- os.mkdir(targetpath, 0700)
- except EnvironmentError, e:
- if e.errno != errno.EEXIST:
- raise
- def makefile(self, tarinfo, targetpath):
- """Make a file called targetpath.
- """
- source = self.extractfile(tarinfo)
- try:
- with bltn_open(targetpath, "wb") as target:
- copyfileobj(source, target)
- finally:
- source.close()
- def makeunknown(self, tarinfo, targetpath):
- """Make a file from a TarInfo object with an unknown type
- at targetpath.
- """
- self.makefile(tarinfo, targetpath)
- self._dbg(1, "tarfile: Unknown file type %r, " \
- "extracted as regular file." % tarinfo.type)
- def makefifo(self, tarinfo, targetpath):
- """Make a fifo called targetpath.
- """
- if hasattr(os, "mkfifo"):
- os.mkfifo(targetpath)
- else:
- raise ExtractError("fifo not supported by system")
- def makedev(self, tarinfo, targetpath):
- """Make a character or block device called targetpath.
- """
- if not hasattr(os, "mknod") or not hasattr(os, "makedev"):
- raise ExtractError("special devices not supported by system")
- mode = tarinfo.mode
- if tarinfo.isblk():
- mode |= stat.S_IFBLK
- else:
- mode |= stat.S_IFCHR
- os.mknod(targetpath, mode,
- os.makedev(tarinfo.devmajor, tarinfo.devminor))
- def makelink(self, tarinfo, targetpath):
- """Make a (symbolic) link called targetpath. If it cannot be created
- (platform limitation), we try to make a copy of the referenced file
- instead of a link.
- """
- if hasattr(os, "symlink") and hasattr(os, "link"):
- # For systems that support symbolic and hard links.
- if tarinfo.issym():
- if os.path.lexists(targetpath):
- os.unlink(targetpath)
- os.symlink(tarinfo.linkname, targetpath)
- else:
- # See extract().
- if os.path.exists(tarinfo._link_target):
- if os.path.lexists(targetpath):
- os.unlink(targetpath)
- os.link(tarinfo._link_target, targetpath)
- else:
- self._extract_member(self._find_link_target(tarinfo), targetpath)
- else:
- try:
- self._extract_member(self._find_link_target(tarinfo), targetpath)
- except KeyError:
- raise ExtractError("unable to resolve link inside archive")
- def chown(self, tarinfo, targetpath):
- """Set owner of targetpath according to tarinfo.
- """
- if pwd and hasattr(os, "geteuid") and os.geteuid() == 0:
- # We have to be root to do so.
- try:
- g = grp.getgrnam(tarinfo.gname)[2]
- except KeyError:
- g = tarinfo.gid
- try:
- u = pwd.getpwnam(tarinfo.uname)[2]
- except KeyError:
- u = tarinfo.uid
- try:
- if tarinfo.issym() and hasattr(os, "lchown"):
- os.lchown(targetpath, u, g)
- else:
- if sys.platform != "os2emx":
- os.chown(targetpath, u, g)
- except EnvironmentError, e:
- raise ExtractError("could not change owner")
- def chmod(self, tarinfo, targetpath):
- """Set file permissions of targetpath according to tarinfo.
- """
- if hasattr(os, 'chmod'):
- try:
- os.chmod(targetpath, tarinfo.mode)
- except EnvironmentError, e:
- raise ExtractError("could not change mode")
- def utime(self, tarinfo, targetpath):
- """Set modification time of targetpath according to tarinfo.
- """
- if not hasattr(os, 'utime'):
- return
- try:
- os.utime(targetpath, (tarinfo.mtime, tarinfo.mtime))
- except EnvironmentError, e:
- raise ExtractError("could not change modification time")
- #--------------------------------------------------------------------------
- def next(self):
- """Return the next member of the archive as a TarInfo object, when
- TarFile is opened for reading. Return None if there is no more
- available.
- """
- self._check("ra")
- if self.firstmember is not None:
- m = self.firstmember
- self.firstmember = None
- return m
- # Read the next block.
- self.fileobj.seek(self.offset)
- tarinfo = None
- while True:
- try:
- tarinfo = self.tarinfo.fromtarfile(self)
- except EOFHeaderError, e:
- if self.ignore_zeros:
- self._dbg(2, "0x%X: %s" % (self.offset, e))
- self.offset += BLOCKSIZE
- continue
- except InvalidHeaderError, e:
- if self.ignore_zeros:
- self._dbg(2, "0x%X: %s" % (self.offset, e))
- self.offset += BLOCKSIZE
- continue
- elif self.offset == 0:
- raise ReadError(str(e))
- except EmptyHeaderError:
- if self.offset == 0:
- raise ReadError("empty file")
- except TruncatedHeaderError, e:
- if self.offset == 0:
- raise ReadError(str(e))
- except SubsequentHeaderError, e:
- raise ReadError(str(e))
- break
- if tarinfo is not None:
- self.members.append(tarinfo)
- else:
- self._loaded = True
- return tarinfo
- #--------------------------------------------------------------------------
- # Little helper methods:
- def _getmember(self, name, tarinfo=None, normalize=False):
- """Find an archive member by name from bottom to top.
- If tarinfo is given, it is used as the starting point.
- """
- # Ensure that all members have been loaded.
- members = self.getmembers()
- # Limit the member search list up to tarinfo.
- if tarinfo is not None:
- members = members[:members.index(tarinfo)]
- if normalize:
- name = os.path.normpath(name)
- for member in reversed(members):
- if normalize:
- member_name = os.path.normpath(member.name)
- else:
- member_name = member.name
- if name == member_name:
- return member
- def _load(self):
- """Read through the entire archive file and look for readable
- members.
- """
- while True:
- tarinfo = self.next()
- if tarinfo is None:
- break
- self._loaded = True
- def _check(self, mode=None):
- """Check if TarFile is still open, and if the operation's mode
- corresponds to TarFile's mode.
- """
- if self.closed:
- raise IOError("%s is closed" % self.__class__.__name__)
- if mode is not None and self.mode not in mode:
- raise IOError("bad operation for mode %r" % self.mode)
- def _find_link_target(self, tarinfo):
- """Find the target member of a symlink or hardlink member in the
- archive.
- """
- if tarinfo.issym():
- # Always search the entire archive.
- linkname = "/".join(filter(None, (os.path.dirname(tarinfo.name), tarinfo.linkname)))
- limit = None
- else:
- # Search the archive before the link, because a hard link is
- # just a reference to an already archived file.
- linkname = tarinfo.linkname
- limit = tarinfo
- member = self._getmember(linkname, tarinfo=limit, normalize=True)
- if member is None:
- raise KeyError("linkname %r not found" % linkname)
- return member
- def __iter__(self):
- """Provide an iterator object.
- """
- if self._loaded:
- return iter(self.members)
- else:
- return TarIter(self)
- def _dbg(self, level, msg):
- """Write debugging output to sys.stderr.
- """
- if level <= self.debug:
- print >> sys.stderr, msg
- def __enter__(self):
- self._check()
- return self
- def __exit__(self, type, value, traceback):
- if type is None:
- self.close()
- else:
- # An exception occurred. We must not call close() because
- # it would try to write end-of-archive blocks and padding.
- if not self._extfileobj:
- self.fileobj.close()
- self.closed = True
- # class TarFile
f、shelve
shelve模块是一个简单的k,v将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式
import shelve
d = shelve.open('shelve_test') #打开一个文件
class Test(object):
def __init__(self,n):
self.n = n
t = Test(123)
t2 = Test(123334) name = ["alex","rain","test"]
d["test"] = name #持久化列表
d["t1"] = t #持久化类
d["t2"] = t2
d.close()
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsoAAACVCAIAAADOs0scAAAgAElEQVR4nOydd1ya1/rAaW/3vb1tbzpu721v++tKWjuSJs1oEjNr9mi2SUyTZu9mJ00TX/fee++NKG5xb3EhIioquFAZAjJkCby/PxQFRUUlMeN8P/7jy+FwQDzv932e55wXAQMAAAAAAADoFMRcDwAAAAAAjwsJi8Xq6+PP9TDmFnZLWQGmjMTkSXTSXV9HR79YLJ9VH4K2ckxRI1M0qBj/GL0Ok1HdKR6c3Ss8foBeAJ4OuISk2KyyBppo6NdOSpVddvLZ5OSH1RQSf3BuxwZ4chAN9OeWJ59NTr6SlR/SMTBJywFGS2GMZUQV+7GN7UlAQieWZ8VHokvxbX26ObdOBxGdVFVYXtfBFD72l1aB3ZIV7W7j6BVfSmYPyHTQIa06IzW/tps/c8MQtBVEuFnaeaNraeMFg17sb2vpEoQhMCUyDfLx5AL0AvAUwCUkBQe6B2DqqP1SGIZhmJOQFvqtJYSAoLdcIiyJNDoQDAAMw7CUxiBccjRGQNDLFnbL40qxEwuGmNtblWhrYflnROXzYxgSOjE/1s8rMLGkmc7T7p9GzOPxBAI1FeFRiRV5ScnTBxXu62LrGJBW1T78j/z4EVLxGRHObo427lF5eCpfoouIgLgp1dPDL76ykzczwRC0FUS4WTmFZRTXdvKkMoVAIFAoRkSCXuxv6xqRWYrv4g/Kn3W9UMjl9Tk5dN2P5ZEj7e9uzg9JJz+i7rmduKxYx/ja/kfU//MKl5Bk+9dts5iiVs7IlDRQXoJa4WCOgCCEsdPxMnKLWJevSCYVG2eUZrL4k138zhJBm3dW+nk0tlggfvwXkc8uMg671S7IFgFBCMj8Y4+4iEnNQcztLI299+dd40zK4xrg3CKhE/NjQ0ISy8jauYWYSanNT4xB51WRWSpfUyGL2kqsViEPHepl5xQQl15YrUZJerSvs0dQfEaR6tGKmqbOPt5c+IWQis+J8/IIQxdic9HJVRQaXxfBCxhuy/ZysgrI72ALZ3D6F1DyI9wsfRMqyRypTAHDAkoeOiEZnUNkigcVMEwv8rdxjcezxE9X5AKGp6UXCvlgbcjp06dPnTqz47hry6Mb0yNAyKRke5w+cWSf4b4tVqU67FjMbCkIeXD69OnTp08f3WOwYfPGO+geHfYP4BKi79y7bhlZROWozkcDnK70EtRiFxuEsfe12s4u3cwSLExJ3s2kpF0+9u+Yhdi1M3V9VSsowWZfT0k6nZR0Oi7gM0uzvxlHBrAEj1Binj9kUlE7ueKvWA8EZPWZV1rmFN4pE/RWJVn+fubqE5MkkXJ720iEJmUWEIZhaX93Vxupgzv7vofsIjKlomO4d34PqTo/aWJSMbmFZZVVldUNbbT+iTWY21wY7+cZlUvoUf+4xdSqlJBgZEEDTe250oEBkUSim3/Z6cBqKUD5eYShC4k0gYRWiUYW1FEneVfaM1CPDo7H4Dr5mt4Uk5iL7+KLJtI5BiElzMUfXdxAkwzVVjAqI9zcIjGl+E7eoEwB04v9bVzj8X1PoV1MSy8U8o5CX2+vi/ovv7b2KdMLCY9BQFv9eXDR+wuW61QvBnm0xsI4Pz8/Pw/L20dXffMt0AudwiVE3zn7u1lUcef4c3B/S952b1uEa4IPhaWjVC6/jtTgjg741NYMYRz6CPRC3NxaH46r9quuto73mmdpigB68QgYHOjDZHkjLBy/T6ijTdlaJuitRJn9ZnjK94nIkUjZlPqKvOLG0eTBAK0VX1FcS539d3zYLlIrOkQSVjuBUNdI7upta1ANLBSkRPq6u4egssqqq6urq+taupj8QXhQJBKJxRPGO7jNBfG+k9gFkTb3ATohFV+EDvCKTC4k0gRiOQxLqCUx4YklJIYOqi/ETEprL1c0vvSSSczFxHhauwflk/o1CgaDgPL3iMTU9yifzKhD+rlHFZHZw2UWSrsQPYV2Me3kiFwqSjz19OkFDMOwoKs2+OQiHeuFSvethV6/rwB6oUv6CdF3ft17wRldPz5TyyE7JAd9ZO2xLb8eP6DLOGtXbeJPzhaPRi9GaauI+NTG7OnRC4VM3h2ETjpb0DynadHBfh7FKzn9Hratb6Im0gFKY95Gd/sP3JAO3VotkJAJOksiru/75TzqUeVNtUdIb6ouwZS1jrrEQDcJjy2spc/kOy6gtdTko0eIjwz0cHBw9gqOQcdHBnh4uEdk4bp5qk/gU8qSwkNQRSTWNIqZnny7GMqJBMZjSkl9AmV5hISFSw4JTShu6ZtCMPqaCnPS0TMiqwhbWV1TU1NT3tAllIz9TAWUMqRvUFI1mS0dlgcBJdPfM3pULmB6kb+tazyepaz3pNemp+YTWdKnQzaeI70Q9dbHXd0A9OLpoRNjfHjb9jtBRWNDF/099c4pwf/nHnw4o7qEM6DbKnSgF5pQSDllmyGT13yL5vI/Xy7qbM/VN7P9IqqyXdPjg2I+riZtV6DHf32TfZq6tTYhcXdt3P0t3x9ymusAhrCnGVeSi+0a+UpL+9saakoqmrgzMmhxP629sWaY8uzEUA93n4jkAuWRmgZKD0ek0n7ILuKnaxeTZkby59ou2C1lmKjA6NRcXBdXyGWxeGLxsE4IiKn+3j6BWQT6pAtU+T0kYl2NCphIv7jMgtLKmnFgwh1szD2R+SUVQ7+3MkRSGQzDMI/Hk8vVgxsMQmq4q4WZc0BhC39oRAJKXpirpa1XeDwqcdhPwtwtzGy8IuITEpW/m5vZeCXVPR1rSIBe6AqgF7qmE31rm8G+e1GVvWOnViGHmtmID6hvI/JEOi8QA3oxHoVC3lkT8R5kOrd6MSjmlhYH/2tivZBJRR1dxIBaAqqtTzCdnsXdtbF3DPS2muXPhV9Iub3NFZloNBodFxES6OsdihwNOESFBPl7B0Rll9a2z65mfCgzEpFa2SGaqAmfUpYUMRO7eGJjF0IqvggdFZuRj21lCsRyWEguSU9JRBY2MbhiGIYFNCza28HNOzyHOJ0tMNpy0mtpfQMaUiFJwQ7+CTXtvCkLSwSUMqSvtbmpsXfCSNUFvTIiOC67vKJ6xFYyQqwtnMKzyiur1S2moVsgexrWkDwuvZBLBK1okxOTcfriH24FzGmOZxoAvdASGg5XV1ur0xg4ryE9t6y6iTWd53Sib21buPGib2H74y0xB3oxFoVikFqx29saYTKnejEoojYX/OJhhTC3m0gvZo64Bxc3V34hZVMqk70toEmw80cWkWcVpRu2i5TKzknsojwpIiS+qElHmZHUkGBkAbF35LQtotGY/f26+7azWwnkHsaEm94IqfiitPhETFEVmTmcERGS8yI83IMS8wndyoABDYv2drCy9wmPTq/p4Ai1qcMYqE/C1DPZYz9HQXtOqJNbeBGFI5qqFwYhJTElJdrVysInp2NoMauAXBqLTse3c1TyHmMzI08dU+mFQiGvDVIKwMlTVpnUmemFYlDCqE0KnIyQiOgc0kw3kxOxu3I8RlXl7PXrNgmZqIAylRPaqF5IOV3YiL+Gm56/bRJSofm8x+9pSHFSdnnhnmXkZMXlk+hFf1sF0k7Zz2VjpwR8PwzDsKiHkOFzZ+joFRNXNEG9NJzdXBhppXzWVXOvVOKsS8cZhNQA05EP6bpdaH6LygcuaC0Md7h+4sTeDScfeqS00GpQ3pCyral/Sh1Dc6c9ldFuD5TtbrnGV6jtZdRdHuZ8/8ShzT8dMwnK74CpZSFOfw63ve2ZXDNxvVp/gf2+5Yt+NUvET0tKJoPV7JCXcSIxcczP/ZqONpXsq4peNEUUZl9VaflXLbVb89QxUFqRfT1ZpdssfK1g4lq4KfSCHpeZdk51kNiOfqkchvl5xWnn0SPHc5JYUqnaxMPPKUw+g1Z5Yk5j5ywuc+TcJrPExBOJCceCnREQhIBM/mbrs1fZ+anklPDe8U9SSKWs5ByVMaCTLxW1av7yyCSs9vLxf5HTqZkeFGX0QS5h0eqMExNPoOL2+DsiIAhhYv5PJ//9ysaXMLloHVyV8NvKfU4vX/SrN2H2fU0TmbCfRqnHlWajkREBCXm4EUqyUtFxURllOFxDa2ffLO2iIT82JCKlolMEw/weUlVuTkXD2LqL8uQZ2MWEmRE1uxDRmiqyo0PD0stIDB0IBptcUZgZ6efhF5tHpGkQDHZLWX52dmFZJaGdObrZ1ZBdRBQ0UzmikVSFgIbPCnW2NYMsXQMjY1GJJaQ+/uSBDHYNMpPAGKMXgvbiGC+PiNxGunAKGWAQstKz8/AN5fFuNv65Q3YhIOdlF1Y1MySq1aH0Yn9b13h831NrF5PqhUIhrw387fgv2w7bBA0R6G9/w2j9/CcsOSJid+V4nj573cJ+eJheDhZn9D/8Yb3BRpdalWa99XFXN3y24JJTKHT+pLFDUFBQUJCvk9XNg9v23Q7Bqp/EJKy24pC/zl24be041Kebnen5Q+vOQvaYCVbIT6IXwr62arT17cMr//3+/GXn3LNwQ6lVaX93PdruzJa1X/980jY5V6U0XEitTfG8d+nqA3uXoVd3ML112tDgmkNwKXWGH5KAUhLjdObA0VPX/3QLCgoKCnJ/eOX4/u1HzEYVQ8xoLse4/bF7+aeLN/x68prZHzfNnd2H3vyfN04f3X9znGLwmrICrG9eu23p4jE0Tsvbp44f2fEwOKtBOeFzKGXZobcPLv9ym9HlO/fMzU0s3P2DgoKCgsxPb9+x7ZBFPG4Cw6Clm+xavO2ib2GbToIXlOZSKN7nv26hv+eU+OBwQTjcwxiP/1lBCAh6O7KkqG90rhjWC8hhSXjAd7auO5LznapwQdlRn9tbvuMWdKmykzrGMJhEY0zCamcrfVS+QyUuCIf7M8LxXXv3DTFIVzKXM8FUPale8KqIhPDMkHcszRAQtAJd5tnKEsoUMCwmtRDuh1i9YQohfJJcK4m1AtnopQ4NdyE5drmd6ZqUSt8aXBAOdzPQ7GUbr52oBH+qbGaJWoWwNwWHC8LhAmuqr/oZIyCTl51jbXC4IBwuCIcLwdeVjzFeuUzQiTWKj1hqZ7EpAxeEw/lXYs/5mrxq72uYmh6tvopDKhWVlCL3B7q97RFvh8MF4XC+2JKT3sYICPqblf1PuV3KQcgEXCoahwvC4bzLio57GSNMrd73SbBXDiOS2FSrgy2uhV3VYRdWz195N22Oyi+EPS24khwsVbXsonHmZRfqSOgN+bF+rh4BkQkJCQlpWXkllY1t6nUXvMkzI2JGa01RWkLiGKICPZysbFz9QmPUj8eF+rjYOrj5h8Uof/d2tjWDIFu3+GIScwCGYVjU24jNSx3boXZk5JVgq3E4HK6qtJbM7Fd9H+yWsvz0jPwSrJpZwLDSLiILmxnqeQ0Ju5NUFOfmaAVBkEdMWkp2ffekYQx2DRJV3sYUqDTRWi4ElLJibFV9F5ddn+RlGzBkFwJyZVlVq7pbjMQunmK7mEQvFIqeNJON8786YpfeMCy5CjmnLsnv6tonSi8G+dTSsPNrDtsUkZXXO1IBi4C2vnJg1fdX0aMF5qLe+rirP837ZO1516jENMLQiVI20FUWesng600meSp+we+ti7HYu+3wn+HY9uG5X8zpLgm5abTuuwP3NAvGFMkRKbcx1eHwhqW7rfNUUqii1twQiysXPNTCIuyWHM+7+/aft0HXdQ//3whopHTn4/vWr73oPCPBEFDyPC4d/fXAnZDSJvrQZYaY2VoR+cBo/+ZDJpE1oxN/T57LmTVffrnu0G2/xIoW5nBbOinB6uDW9ftMolQEo6cy+K+z+08+CCikKLcX7m+rCP/TYNP6I9aohtErSnqO/eGV33/yy/FbTvHlJNrQn4lDjjXZ+fOucx55FI1+QYq6sOmbLbfCyrtn8H7HwYpK8P/K3HZtGq6MO1zAzaS1hmQEfWFnjvBMQ/ZwRy5YlHoBITxi7xfVYtnCATkMC3pdUR4fWkLvBOZh+lRWqgja/RIDP7R03JxWhO4VDs049J4mq2jHdy2gT3xzUzhCjcHoqZMjvOr99lavQtD6gh7WaIyCHxll86apw54qGld11uG32EW4v2biuC+vKp81LBPdnXV3g8xeNoG+CCyvlMlnszuhXC5DxxlPkRxRyEUswp+Bzq+Yu54oJVRwYRiG5bLBlhbseR/jv5lZLY2pJY62lvH4LbccTd6w9r6IZw7pgWxQ0kQquxNujzC3/TQOPz4kIeAxfSKMH0lyZEgvVny+7GLcTA1+Vki5HXXYvHzc6AIRKauVUF1UPruUCAzDML+3uQoTHuDh5hEQm1FWXVtb2zTGLGAYhnnksqSI4IljF4N8RmdLfa06hcnh3u6eEcl5FerHyzNj/V08g1CYktpxNHcNRweGNvgY30AbWro5Q/+EUg6HJxYPfWjslrL8jISM/NKK6pYernDs+xCS8yI8NdgFDMMwLKC1NNXX1ta20mjtFAZPKJ3k34Vdg4wqIDFGNyZjEjOiPALR2OahfbAmREApyy3GNtNFg3JBY5LnsF3Q6/JK6zr6x9Zq0ov8bV1RT7VdTKwXCnmt05L3X/zqjzy1C5Qnr7RT0teaYrrt6wsotZVqMlFffbbfjbsRnSOHRL31cVdX/u+Hs6EU1aovdkuh3ZHPlpyP6RrpkUVKtzFas/xqVLvaxC/uqoi4vOLLVaeiNPnFlLUXwtZcz4tbVh5zLRvxC1FHcXKghWOy6gW8kFoaeN1w2x7z1G61GUDQkGR9ZOlP+x+mTXv6E7TleVzeZWD0ILJe/WqT15RgdXjtL4ct0CNJkr5S/0sGq3+55FvCVIt2crF+lzb/aHDVp5ShfG78w717jtwKwarfuqC/xO3kukXb7oRWjJwe6Dn2h1eu3ngrpJSm+skTQk9v3nbQIomgMenThrqx9fudOtILIelBsPt7xk5nqjraVUY7wK696uf8jnNiKJUz8idQ6oXHQWwrRTx6hVKa67fAFkK4JMfReCN/mWZc/EoH85fsony6+vkq0wAdH7/A3gIBOV4h9jE0zdda1F7wMpK855mbzPPIzhUo17TxiWddLF/zzSziqM1G9WVBn5mbvOCASuZKVV+tuyL4DTMTBORs3Dk4m1lKG72QDUpK8jzfNTF70yO9UOW7I5eKagt8EJDJP2z8nEY8ViHp6ylYb2z6tl2on8p/rlwmam5JX25q/b9wbNu4l3h29ULKphAr8ooauWq7XWCLJortTYmE1UEoSU9ISEhIiEYhwwM9Pd0D4otInIl2d+JPYReaEDMI2VH+oUnlZI76tb6IWpUa+njXjAipdcUlxSUV1bWazAKGp7CLaSEhpQdl1vX2D3/JmcSkYEf/hJp27qQFnQJKWV4JltDJlcgUsKAx2dM2ILeDK5bDPCqZLhi30pRe5G/rpmYX/Nai1KTE7Pq+p2LRCAzDk+lFj9+WF1786o88tfTcrEo7Ex8em4zfz11xyZ8gvz9Zz4Ke6uBT33626ez9RJLKcZlI0NdSp2ISE5R2jteL/tZi1+MLfzIKaR7zUkxihtmWv3+56qQmv5i6tFPYmut5cdWPB/5M7xgeUUdxSrida65aNJZeGXnvwOqddxPHzp+dBd6XV781A78QNCVbHl275pB5UuvYLQzF7ZkOJzbo7/0rtn7YL/pK/S8Z7D5qkjL2D9ydbX9i1ZcGV32H/aItBTLcsusP/5KxGxc1RF/d+e17qn5Bz7E/vHLvRc/8DrWGk+sFLd1k1+KNp9xzWycsRdMeabc30udTc4sv/cMvVbSRBSPTj6ChtSmuoZM8MDozTFTaqUkvmP6R7v8xgz6Oxlb0i9XmFlrpNhfbVyDokyRis0DDbKdNaSe/DbPSxuIlyPF2i4Avh2EYJpaHfGVpurqgl6NWc0Gz97J83QT6DEXslqpXWlBzvjM3fQGCvsB0imZRaq6FXijE4vb7TsYvmlkuTierTRpySV9zyv8ZG79kaftzofLbohjs78OftIdeMbdfHZ/mQh5Jb8jFkr5CPAFJYY7PeDxyvVj7zWqT3DmotBXSm6qLM0vH7HZRXjCz3S5gWMKiYFMCHOxcA5FZ2No6bHZiaEjE6F6d4xD3NRbEBQbHF07HLriU0qQA38jMmq4BjXbxWNeMSDnU1i56v3DCz2tggszITGjL8QnMxNO4UhgWtFUkBHhFZeK7BJOvFhF0NeBJVO6QGggak71sA3I7uCI5HZ+ZlpQwnlA3c+dQFDp+5AAqJQ9bg6utKqztkj4tt06dSC8U8sKb7734t0PR6nYxY71QyCTMutTQyYiIRqpVGmqLXMyjloRanln3zg+bjIyMjM7f+EvNM5RoqxeSHnz8rVVvvrtAf6+ROvt3bFj4X8THS7a4Vo7vXouVI0JqaeiNzb9svobqgOFhu7B1U7cLYTPG+cRP7/5v4YZ9Y159j8GyBe8jvt56LqJ+eh8QNd/9/JrFO/8Irx2/QbKYiPzrwNIVv1lnDp/6J9QLMT7y+q4FS09YZ5BhGIZ5Ff4XNn/3kd6qrQfHjHPn6gUfvY34+ZxLrvIMMCO9EJa5HVr17bYHcdXTV87xSDuprcHpIfPtzd9y8d8SjTRCoYyKGuu5GraMnoZeCOqveDq+BUHvuAXtio03QqFGf6L9/8/S/CUIQkSUa3wVrVaOiNuMfWz+YQL9XwyuXjQoh2lOvjb/MPGx7xWq3dqAX33AyvxlCJrnGX4oHqU2jCiff5uYvABBiNh64SyueabWC4VMwCz5xdj4BVOz//hEqY0BhTwQ5jkPghDm1v8e/VopBgf5NfXY+xH2L5pZfOwbZYRCGSWlXsdPtmLpUepFf2ux6/EfFh8NHntR8SiRcntJ5ekoVExYgK+ni18EaoSY0CB/H6/gGFRmcU3btFekygZo7U012OrWTgZ/ULlmZBK7oBFyonz9pxW7ENPrsqPCI1Ir2sau6BQpqzrnfDctFQZ0FruAYZheHuEWntPMpJOxqeGuWmRFYBiW8Pki+bDhCxqTveyG7ALmdTcSCfixYEKtLZyQFU1EfF2d8lhTj0AmV4gZDK78aViUCsOT6UXq6Rde/Nu59DHHn7zkCAzDMCwd4JAKQkMDPeyubfnizX8t3GR06spd3xK1fIm2eiHsqg67sOSDL3657KJRg+JTcxo1bBmozcJUKb0m7sGBYb/QaBcwl5hidWjRZz/tv+2u8dXROeUUzvQ+HEqm7e/Lfth/J75Jw4OtKaZGS340fIgenlUn1AuYhLp3YOGIXjAL3U6t+37R9vOm3hrHmV7e2KuMHM1IL2B2ruWeZQY6Cl/AMAwPcKiZjYRQfNmVYNcPzSGEvdfGyFijjOoi1oDqPDgNvWDXnPCw/zsEfRySZoutCcXjNfxQmBxNeVztFqaKm0sjP7AyQ1iF+vQKRb2FK2wsvoioqherX730lW6yMn8Jgj6LyvPD1WoeRjtHpnikejHIp+b8ZGz8opn5d8hizWOoq4+jql2uKOSD9J6mUDzOF5u1y94YYWr+D/cQo8TkqyVkjWtBHqFeCNqx/heXLzzkjnuMwQspu60y2dvCeIoVqZqLkyZHJpMNDg7CsMqakUntInqadsGllCbFx2RUtHHHOkQ/uTjR33fud9NSQ6d2AUu6CsK8o+PRkQGugehCQrdwevdPUbULzdDGZUaeTiZMjsgrjb98evRiGLmY11WdEhYW5GF3c+933+y4rGoY09KLFV8uv4ycVhJCq30vhvxi5Zpz/rVtjUUoP9vQ6jF16lxiitWhFUv3WmROfbcELaGV+F395actlwIreOMeE+Aib+9epn/KOXd41BPqBb8y6PLWpRsv+xTTYHhYL1bsvKPNnaBmphcwO9diz8bdl/yLJt4HaEZIO6it6Hp8WHmKgavdG5YuP6PK8tkDY0s7tdELCemul9M7EPR2TGXduGl2crTd94JXs9/O6lXI6vvs1oJs73ctHE8T2PwxcQgx4Xcri1cgaF5iE/fRhE21SI7IBvordhsbv2Bm+WXmdE/9CqmUX9uED6utcssK/xQyfcMp+KQmw3h0esFvx/pfXLbwkNvjtAtYJuLS2/FFGakJUYkFo5eu5TlJ8VFB6EI8Ho9vonTN7oY6EnpDga7tQkxvLkmMRWaPj1zAcH9TXpyPV8wTZxeRurMLGJaQ0r08HSy9UdN3CxgWNCY9J3YxSe1Ff+T+F1+cb16rfviJ0wsRm14Z61mkPhXJRDxKnv+tI2vW3MOM+IW2eiHjtOQ6Hvrx221m+eN3XOB1ddVmZmq6NYF222pJ6TVxD3YvXXnM1C8B5W0R1jD2f17aiw2/s2P52tNeFeNDon2NjbXFxV3jjk+OpDPX7azB1iMmqW3jHuvMtj+1Y52RTRplOIA/oV60pZkdXbbMEEpskMAwDItb0aYH9dcetU5uGr89IrWsrJZIVC/tnL5ewOxqzws71p13SGuc5VpBdhfOLDPLn9LHVJ0/pZzKOsw2F9s3LPweNNDoykliOrUXdN8Itw/NIIR3VlbfuBufMAh30pNcWrnsGZZ2DsELj7R72wxCOPr/7Gz2imM8ii2WjJ10um08LV8zgRD+xc3jy756qk4koHy7Zrg2dQgNeqGQi7rKjyWiQ4a3vpCLxeS7DsYIU4u3I6rHZjjk0v72shNJqZFKZ5YNipsIWadTinJV06EKmZDbEZkV/ilk/oFnUuq4TKkGvZAKO1qKz6Rno2aVQhO0YwOu6y+9EtXx2AsvhHRSdXGGetlFc01JbmW3Tva6fwSxCzG9IT8FlZBXS9Ww0WV/U16cj2d0vspuWnPPcOyiQDd2IWjDZsX62FiaQfbhpVrsoTUGfmOSl1cMtpMvmcQu7J4Ju5hELxRd3utefHG+OV71oHywI/H3L1569eN7JY9hcNogpJOTTPcdCBsb+JexKYWuJ749Mbp0ROvSTtlAR0nQRf0vfzmHbFXvlEetzwy1DS/TdDslLXftlHIbU+1PrPrvFz8fvqLBLmBY2k9IsDBateyoCaZT/ZG+xoLECKFgS5AAACAASURBVJ9k/Ih2MBswgSZHjtxxCJl8taqEhQ25eXjdlps+FepjE7Sm2hjtO3Deu2hkmUhfqf8lg3W7bkXg1Cb3nkq/21t/XHfMLmlklwx6nuuJLSt23g8dWxxBLYsKjUaVj6wTnrFewKLuFJMdWwxvhWK7ZxXA6Cak6LvafxGRn8IQqNVBSFtNg9w/MHY+X0PtVNrBdPRC0ladoOdgibB0O1rerr4fBgOVEPhflwi3di5P0zSi/a6dtKbk5dbmL0EQAoJWYdo6JeMTr+Lm4tB/mpsirDwv1fWpl3D2hIS6veIUE8fSsV7IZdLSDOdXLUKClH89+SAPm+2LMDF9zSHgr2bVQJlcJKI4Bri845WUoTw8KBYUYTxesXDelK2+45ZCQqeVbDM2necYHjjO7sfrhYjPjEO7fOSOQs5i6wsJqznd9eSm/ebFE94n7ZEh7GnBFavvdtGOx+bNuKhzDDq3CzGjpTwlISGrooWt6UZg/aTh2MUTZxceOrELJjE3Iz4pu7yypq4syd/BySMwIp/Emc4tFfmNyV5eibV0gXSi/8dnxy4m21ZLQS2zP/rVl+uPBgwZhkIu60p5uP2PvWtfePFvX204djy47jENcjIkfeSU+z+/vWT/DdUQhpTbU+pzY9fmM6FtI3M3r6Pa58hXGvViz0ff7/BU8Sgxt7Mw6Pr+xat+Mx7Zb0vMbM0PMr5iEZzdpfGyQutNwYWtOZ6n9N6cv/GKJruAYXiAWY+2O/3rik1XnNF1wy4x0FmF8jC+44Yq6x15DrMy7N629xCIt/R23ImafEtPfk9l5IOju1YfNYsaMQwaLtHl/NZ9vxkHlXSNngz6Sv0vGXz14fxl55xRuOFrzZ7KaHMjvXW7fnfJoKisQuV2Fvhe3bdj/QGTqFLlCh1uQ7qXtbFZZEEje7RhK+r2rws3atSLJZvuhGMnSQNxyFEP9m296ZjeNM2CEzWE5NxfvGwRls7LQrPiaP3KdzuArU7Z6mT9ukdCcDtnZOaZQi8so326OaOfl4AWnhH0kbXZ266B2/NJ7UMTjYDimRG9xMplT14zScNdmmF4WpuCi9uMfaz/bgIhjH3tetSLOkfgUT0S3F83M5nnGXagtGO4ipNHskgIWWDidBjbw5pdMZhCIW8r9UNAJi/b+bn1wAq5rL0+Y42L+feohtF9OxVyMYtsHuXwgqnZh76xZ6p7YRiGFTJBX92d6ICvLT0v4EcXgyikA01lwQgT09ftA46m4ZT7YciFwt6wZN9PzKw/jsGSx52hBoX9BdneCBPzD7yiQ+nwoJhfUZG40t1pc+YEu4Jqg4RNzvK+tOO4aebjD11I+zsI2Ny8GtXdLsj1FXnFTTxd2YWWmRGt1oxwOwlFaQlpOVVkhuY7dIzYxROWGYnwDEqspLAmjBdoA5OYm5mcUVhRXUthCiUyWMLuxKUHOFg7eYdHxRY3a+kY/IYkL69EHG1Cu+C3pvnauDwbdjH5puAKbmNmxO0NX6w1NDQ0NDQ8fPi6c2h4kdfZVwzuRkbHxFZp2BH4sSPv7yx3Ofjej0evXjq401DJgUNGhmdMgzOUAfoBRmua1Q6DHz967Z/zfthx+a5faR8MwxJ2R2nw1e0bF/73tbfeW3jgtuloRkA2wKIUh9rePrRu1a6hLvcfP3PaKji7Rl0uxHRSju8NQ0NDw/07Niz57N23/v21/m5DQ0PD07cto6o1nxKFrTme949uN0npmeh/XtrfTcz2/OvCgV/W/Tr06vtOXf7DObakgabyFAEx0dLwKwTi7YV7/opv0bA6QRUJqw1X4Gd9+/zxbcOf0Y7fzl6z8MqtbFXb4KKv1P+Sgf6qfef/srhx6dhQy22rdxw9dye0nNgz5hJRzCBhE60uHNm7bdPeoaa/nrtl7J9W1zEiF10lgbZnfv7yP2+99+WSDaec4ys7BmAY7iegXR4cWv75h/98f/7SjXdD80gT7vzNIac53Dly3Sm+bhYRjK7iLT4OCAhCQHbfB4fvQSINkUhDZNQqF9sFIckW9T204f27mSn5mN/8nf9lYYqA7BeGRlyt7ugQymBBu19W6g5Pm3+aQQjI/sewSGsSm6GcTQbYnamNeQecbN+0994cFWuIRBpG+n7qGnWvtK6SKxGrb9pdUJJ2FoU0RCJ3+jr83cwEATksi4zej0QaIpFuFAFfc5xVXIrxmWdhgvAtqJ14ux8+kxxXn7XZ3OwlR/99cXGGSKRhhPcHTjE2tU1E4SyqOodRyPvbQ9L9XzAx/TIIeSgubquX7bfx5TkMta+dQiFn0ZqCqlP1IdNXXYIMkUhDZOzeMO//uaM8GihqX9FBIbUmCgFBCMj0VQu39cN/kbh9UcEL7W2WJlUmjf2uwTAMw3Ipl9Zol+D9ioXVtyHIA9GRv/i6rk2rKWPN+GwmYZGzA6/vue1ROfa2vI8BKZtCrMhV3+2isao4s2wWe2lJJBKRaPg/hd+Fw4T5RKRUdE40O2hvF2JGS1U+JrOgsqlXY9wChpWZkScydhFX1tY30/mDSczLTEZmFFbU4NuYqqUWEnZnc2GMs50FZO8dHhWLRCIzcN3qO4WOgV4Z6WETWtLDE09kF8QEN2uXp3uvzlGmvudINzZyiKio6GwSTy7rrox5IsRimEEhh1KFziM049IjR4lNTC1X2RRLKuhrKlQ+FodOH7ovhkzIaa9KUx5OSMtWXxEiG2BRKlNHukzM0HASHOQzW7EpkeOJT8urnWhLHCGrvbW+lDz59bi0n0osSRrpLyW/Ytz6NAG9uTIrMjIhq6yRNoVdDMHvIZZnjnSZXoKnjiv2VNZexJe1VuYmKptmlo1TCyViBqk8J2GkU0wFSW3vrP72yoKRzzCpmNDFkcIwLOptKMaglIezq8nMSeZ2UQ8h1PzEDffomhkLxgAjv6UxkkAY/5NKZatc1Aw0UpoTVB5No3I4UjksYVe0NMWpHC9kCgVqU6ygvqUpXrVnUne3ZHzcQkJpb0LVaxhGJIFQwpJMNDHx+ygoYn1kB1s0RYaDV02sj1bttpnGkc/eLYZQyPo7R3qOqq8f4xYjzQZlnDK1t0aMH7+JhUImZHdo/BxiGpqK+iY+Pcml/X3tI41jG0mzcAtY0Fuf7HL0ukOsprVgjx6ZiNffR1Mt3ZQK2EwadTbFnLJ+akNZBhKJRCKRkUHeXv5R2Xj12UHcR6ktTBlqERPq6+YTnlLRpmlvlhG4XYSynPScYlxrz4RqAcNwPykf+eRmRujTz4wI2iuy0xKQGYUVNbWENsaApiJOAa2FVJnk52BtBkEQZOkaGBkdh0QikcUtGnb3opcEO1r7TVLVyScmPkN2Me07pgKecToybY6vWK1pYepcwiGXxrleNA1E100Y8QEApoegtynN/fQ9j6i5CFw8OiQ8JrW1uiAl0sva2ME3Jr+hb4w6yAbYPW2N1flJ4Z5WkKN/TB6RrmlnliGGghaY/PK6tomjFkP0k/KfvLqLPkJKqKuz1nbBbMjPTEYqQWeXVOHqJhKLUSTszuZGIiE3ysnWwj4ss6wKTyC094nGRRrpJcGO1r45k9qFu7VLPL5vqtuiPSUAvQAo4TfnBlkardb75J13Pvl29bZ77vE1T1CUikMuragn0Xja7yoIAEyGhM9srcFUPVNuoUTG6GrBY0uaO0a2rh7Xgt3b3oSvbumcxC24XYTK4pziSlLXBLUWqoj6e9ub61u7p7rf6GOlr6kGV1tFpLIGtKu7GGBQWhrrlTR39493hIkR0FpIDc09XMkEbkAn4xvq6zpYGsKaQ/CJ2DICvqlXMPi07Js1BUAvAEokfeTq/KRoJZjxtRaAp5qegHikYVzcwSl/kEg/ndxIDjBnSCQSsXjSjOnoxlsTIu6n9fROFbRQMjg4KJNNc5HmI2egv18omVVFpw4RCPjySe8sKOnr483u3oNPGEAvAIDnBF41kRhbXx8z1U8skVg1fgc2AAAAmA5ALwAAAAAAAOgYoBcAAAAAAAB0DNALAAAAAAAAOgboBQAAAAAAAB0D9AIAAAAAAICOAXoBAAAAAABAxwC9AAAAAAAAoGOAXgAAAAAAANAxQC8AAAAAAADoGKAXAAAAAAAAdAzQCwAAAAAAADoG6AUAAAAAAAAdA/QCAAAAAACAjgF6AQAAAAAAQMcAvYBhGJb0USoSnTyLmHM9kDmA15SFSozLaBxzB25uOb7oakTE9og0x/qWnCbs/fiI7REok+rWZvHcjFPXMBNz0n6LjNwekRPb251ennE6NnJ7BNqLzGIODrdoir9tHVPQxpJM2VdD9FWL2HJqv/TRDhkAAACeHoBewJI+SlkUZBySQ+gRzfVYHje8pqzoIEePVFwnW+0k2t1ReSPE/i0IQhh7/Zacejkp4F0zCAGZrUKX5nDmarC6hFSfusPV8jUIQhgHW2IzdwY6/90UQkAW+0s6WpXfAg65NNL6yJ8heVMaBrulKNT8wL2wkm5gGAAAAADDMNALSR8l1+em4Q23PK3cgkunE0pL+x75sB4LPFK2h+nNm57J9epuAYvp8TnR31tCCMh6SSTqGjp2lb0lAoK+Ck5waWYznoETqKDNNtrzQzMIYWy3NT3rTqT/p5ZmCAhaiipK7BEKZKMNOeQk56v77RPre/hTdMluibe78KtDagtT+EiHDgAAAE8Hc6UXChGXFn4lct/h7HTaHA0BhmFJX0um35Wd9wKmClxwO6qjH27dunXjdqOTZqjuxzS8RwqPlGZncfOWb2YnW10YxI0NBce8bF4zdl6PKggnFF+JcPvns+QWsKCkGLnK3uIlY6/fCnHJtelb3G1f0+QWMAzDsKgnz/L87qteOVOGMITdWdDJbX/4FXdzn4VPCQAAAGbFHOmFTMrClWx5C3r9HZdTKN7U7R8Jkr7WTLezW0/aVkwZ75fwma2V0d7mxzYuWH3tWdALHind7vaZK06JLYIxj3ApbimB75o5b0AVp3eTI/PiFlnb/RSVHtTxbLgFDDNqTwa5/N3E67fCehyjySbW97/mDtsyytLp490ChuEhwfjN4Kx7FnlqwciGDq0761MEqjAAAMBzzxzphULGbSee/8LkH+/5WVTqaCqWipgtTZE5U0WxlUhY5Ezb4+vWXUNqW3LBJGaYGz6ZeiEg11aXFuD7tWzOI6XbnTQ8csOvbEzkAuaWV6Vvdg/YlVZZzOI3U8ouBrisjsJEdHH7NZ56nz4YianhC1wjrpU2EQckBFzCOifnXelV+SyRSD7hc0Q9cX+sWXsvBNc91sXGIuyOOrd01V8xTXSQIgEAAM83c5YckUmELaWtWbndXbqaiAVccnr2uTC2dq351Jrga0uXHdAidKHkCdYLalFCXKBnHkO71j2lPtcPG5ywHB+6gCV0Vm8phdrQL5TCsIDPqu2gVDGfGbeAYVjU3t2Z106jiqQyGO5nd5dQ2oncydwChmEY5qRe/+nnQ1aZLVMuI2GjL+otMXQq6AQBDAAA8Fzz7JR2CnsZicYBx7TUC35Hlf/5Rd8d8iRov1rkydULelmgvfkVJy31oqfA7cL+TcdsMzrAGVBbOKk3lizcZZxGYmrhF998s8syt50DPl0AAPAcM5leKBSKCtfiSu06kkmkRc6Re7yo2r6yVNJXUHLQuLFX88NyQR8DbVZZp2VnXF6xW+ySRW5a6gW/o8r/+Dfzl0N501iL+oTqhaC10OePtT/tOKalXvQUuF9Yt+LXW9EEXZz/OilVpugU5wbqHFboPg44qdeXLNxlnNashV9cAH4BAACeezTrhaKr7qpB6C+/hC3+JD5doRgsKzQwCDMwCDMwCN+6vaRKpaFU2GZvEGpgEPbLhpAfPrV46yoJhmG5VEqKTDIwCDMwiNi9r6xmtL1sgN1qYxBqYBBmsDFYf7HrBzvLKWNffJDb22xpELJ+TdDPC9Pz4UFON8li6CkGEfuP5WJUz2PCgbbkHAODsI1rAxd9avG3Vy3+812gcqgxxy/iiJrftYRGTLy95n8LjwS3TPLZcDtxUX8ZDPHr79c8EwpmrRcsUl7AbQMl+y48DE0vzfa9ZWBgcOK2bab6R8GsT/e6oWx64KpFTI16GoeOT3K7ZmBgsG7FD5+9//qr7/xn/pK1yuZnTLwLOjUPgYeLurt7uf5Jp9wJxE5LOEXVeWdDQ1d6Or9v4X26tA5dX3wjNtQgLGzoxygXV9g37kwspMYWph4IHW1mEBZmEJ8f1ckeUDZhd+FMUmLUGoSFGYSFnSgsNE9O/k353BOFDbix+YeBskrMmWiVzlHFqTSejjYzaQky/P7rE55V7dypWpJ8dn/5xakAYs9UlRoAAADw7DJB9GKAjc1sNdsKvfAi8r5jqIFRdjCGjMGQMRkt/mf9l2yJcFMqhlzGr8eQMZiWlMRsg1fM37raJBUyo/+IuOBSn5HS6Hbc+dU33c8lj8zIikEJj4AhYzAtScgSIz1LTXqhkAq5uESC7WH39/4d7xCYvGd/TjiGjMGQk2Jwdzbbr9yvYhiyQX5XLwZDxmCaIn1SNs5z/OVOLWZoqJi24nLWBHUVou66mCtrJwtecDtxUXd+2bnz1MNIDAaDwaSjwlxv7f7x8y9mrhfCrhqU6fFfD142j8FgMBgMJsrb8uKeFftPPzCHbu/bv+FYIF7ZdKC9PMrirNE5yCd2qGmEu/HZXxcb/emc3Tb6JtidjRUYDAaDCbe7uH3VdxvP2cdhhimtJdEmOLmxK0JubN2y51bMLIMXEnpfb0Zx8mZPKwRk9V83Dz1Xj22oLM8GMqYKs9vP8XVbZ4O0KlXDaG8pv4/0/tLOanFkuiOejCGTMWRybAFK39PlC69Ik7rOdgkMw7BEwMorS/jZxRIBQQjIY39WmUVayA920Bt2dh9Y+J3IKffMi/3J2eINu2j7ZjprpHdmA5QWs9DJZg0q37uejCGTPZL85jvaf+0bcBtHbdOBYnRGnV70yfo7yY30qcIXHaFG8/+z4UE2hQXCFwAA4Lll4uSIQlFj6vzCiw6bzGuyKjkDyoO81naTraafLS+uUm8t5rf99Z35P84RS10SXZMo1V1ShUTSFRT26ps2Z5PGT7NyAbPNeIVGvYBhGJb2c3Pue7z8lvvK+xUFxX1DCQ+ZZICQmrbtQ89L6PFrWcVUfNmx/2iZHOG2Yd0Pfv71SpsyjQ+LGc1pVkZr9PdZpTXRh/bAlon6u8sirY4bzFQvhF2VYXeObtr1MK6VObyttri/Psn2yPafjaxTiaSGqvru4UUvTGKq/dXt+//wzKcoz84iDrUo8OqRtT//bpHTNq7v9lzX83tXa5kc6ch2PL1yxcE/E0gzeBdjYJJLTwbYIiAIYeNrmFVVzOLz5DAs4WUWx69whF53Q9o20ZWWw0ZnRf9oASEgt+MlJJJy423JQKt9rO/HkNmihLIc5bulNeXs9rZGQLbr0dhslohJKdzrZ4eAoEUxxSl0Ea+jeI+fA8LY7UwFhTz0zRpoD0gO/dzKaVNqSQpNwJPBMAxzOb1haX7zbaF5zgleHSxtF9VMSGfU6UWfrLgaV987lat0hBrN/8+KmymtU+ZRAAAA4JllMr1otPd88W8hnuoFgAqZrMsv6KVXnSG1ogyFREC1XAa9+rm/aaRyMYhCLqXRcvLam1nwOLTRC69/fYz0alVdWCKhNVX89r6zYfD4HqelFwNduJAzyybSC157ue/J+d8s+c2PqHZ/jVnVXjBwqIeGyzbfQLWrHGQTki0PbzA4E96oMrb2Au+L+7YcsM9RX6UgIqU7HF/+45676LaxfU9LL+glvld+2aRbvXDdml5VzBcrnQEm1qbtdIMQDhEPCd3K87qkl9lbSiZnkalNXKHKGbo3JDFkPgR9Hl2YQhs+PKwXxt5Xqts65DDcjT0c5ISA7A4UNhGFMNxdfiDACWHs9Fvp8A1QWupStrlZvGwXYd1EY6msAeG2ZBt42iIg60MlFNJsAxhALwAAAGAaTKkX8eljj8vF2MxvXjL7AupSPSoRUC2Xm/79p9R8DTIxHm30wufDz9Pz1Q7rSi9E3XUxV1Z9vuSPRA0nZHF3bex1/U8Wj7WL2ekFpyHd9uj69SdCVMtBeI2Z9ke2rDcaTYvAcC82/M6Blbv+Sh5bO9FZ4H159d9/3HNnnF9MSy/YFSE3tq7ZcjkQO2URwZQM64Wx9+nSZtVBadILdVjNDlmoDSEhG0L8vnGweUOzXvjfwnd0w0q9MHY0KmluEo/XC2ZkYtB8M+jjiII02oDaElpW7fkAl39A0LyoklzmLP2iM+r0ok/2Wha0sqZYxDqkF/scKjr7p2oJAAAAzyzT1wtYIWHVHHzJ9I1LJLWDAqrlSvN/nqrXbhuLudULeV9zrsWWD781cKkZ/yCnpdBp32ffrrEoGHNv0FnphWyAWhr2YP+67VeCyodH39eY6XRi7eaDlkndo3uBDZAyHH5b+M/3P1+4eoM6Kxcv+OhtxNdbz0XUj+l7WnohbUKbHF669IhJisZPflpMVy84VLx5avSGkJANfu7/cQs9kVeVRKm6E+79MQR9Hl0wQ70YIJmEeb4PQW/Yuy32D94QEjL6E+D5P2uLlyAIEZSb1jvLQssa5416Ky6E4akDU7WstP35s2VX45rpz90d8gAAAGCEmeiFVFj/u0a9WGU+tHJEC+ZWL+BBRkP6g62awxcsUq719v/8sN4RO+aBWS5MlfXhE033LZj36Q+r1q9fv379+pUbdh+66pJDVLtdFpeYYnVo8YLVJ22QOZoor20aV7Q5Lb2AhYTYv/Zt3nIpoGLW4Ytp6UVbS9mNCOcPrEw/DEgwq2rK6aS1CSSDo8mRmeoFl3gv1P1fEPRxSJpTLSmHQtHw08Puk8xuazCiz47vVp3yw3bypwpJENw2fLHibBi+dwAELwAAwPPLjJIjLcUbXzZbbNOjevTp0gt4kNGQDu34cu3d9HGnZH471v/3n3WtF8Ku6hivP8/YheeOUlRZN+5GWVxiitWhFUv3WmRqv5HE9PQCFhJi/zq6Y8fNsJrZ+sU09ILdYo7ym2cBfRiQYNdAZ0pGTr2T1F5opxeD7c5Rvh9D0BuheSmzDVFMCNF753erTmpnFxuBXQAAAMD09UIuF2UkvvOK+YkE1ZLPJ1EvBDQ+NrxmbCZhmMF+coH74TU/HwxuGDs0BjEd2vrpkgMBjeoPzEov+KRs57M/vT//p3W7Tt8byY9oGBejKub+7uWrj7uWjBclOh6PzcpqG3tYg170VlVh8/M7NL+GsC3D+cKW/ecc8ro0N9AW7fWijZi1x8scAUFLE8tz1KoXZq0XMBuZEvyNBYRwS/RvZ43NzTEId5Nj79RQKbPae57ovfO7A/cT8TSJFnbx5T4I09gnBXYBAACeZ6bUiwBftX04FYNiitV39q/+mKxewjnneiGlkwhXljmvtBupiJR0d5BdLBonWpEol/TiUH/uWrAFyh1z0S/trUPfXfPJGL8Q0fBx99e+/8nSvT6jhZgccmnw7bVrD56fciGGTMjuqkbaXzT46OV/zPvku5/XjrDrzP1g7Ogbkgka0xxOrv5x/91ksnoXdHx2fLBHWtO4K3RmZcTdX7fsuYMa2SSstzgrHRVXNVGZwCCvOuLOkT17/owhzCqAob1e1NekbHOFEBD0dWxhCk01YjOiF5nG6WnnssozaIJp6sVgHyl3i5ctwtxuQ2Zdjdrd0BmolPCvXSMsm2h9s8iNMHIebtp8xqeQwh2coiUNc3fN+rPBFVT+s3OXFgAAAJgJU+gF4gXLL5eHKNMECpm0zXq1x8evhjvU9qtfDcpFvMbz83SmFyIWJ/KErUa9OPSOw09W4y/LFQO9vWFn3T9dkz606ZaAxsZ4pgVUTlJeNyiklsdeM/z5YPCYzT2lA7QqJHRk4bL912KHDENEa0jxPbPq1/XLXn3zX19sPnM7vgmGYZjTmOVw4F8IxGv/WXLQrrhvsjfMasr1eXD4jElQer4q8V73jfTn/bDvVsioYYi55Gyvq3sXLzd6GF45HMIQkItDbG5edk7Cj73HKQzDg72lQdd362+9FozjwDAM91alxob6ZrVMUoQoZJWF3D109pzjrAIYU+iFmf+VSsqQnQoY+PsR7u9A0Gs2PhexZLIEhmGYQiq5ifRZYG/9BgR9Hh13xN/3m4C04Pb+MXrBasnb7WM7sV7AsJhbUBa/xMniDTvXhejK4j4hDMOwgOKZFrnI2nVvdn0Nf3Dmp3tGjsXOveddcxrZU4UuaJiHm3ae9y4mc0HoAgAAPO9MFb14MdQ2v9bsYKC+fpC+ftBqfc///VpUVNSnjNsrpEKKlX6gvn7gqp/dP3jB5KX/eurrB+mvC91yk6AphSATsJrN9QP19QNXrvD65J8mr8xzWaofpK8ftnN07/DB/p4m4xW+X71n8sprDj/tiH2YyoVheJDHr/CJW77E9b2XzN74xH+fUQVevWu5VNpZXn9ni82CZUH6+kFbfo13SmbSxWNHoMagkIFLt7549JDDmAiGXMynVcV7XNvy2SJ9fX19/U37jt0PS4gOsPtj6RXfgvIaQjcPhmFYSq2Iur4UgXjzy9XnQ0mT7HLAImU43N5+EEpoH1NrIeHRK6LuGx02OBOukqSRDbA6q2IcbhxY+d1yfX19fX39n/f8ftkzraFT830sBvnM8rC/jDZ8/v0KfX19/UMXHsaUU6e4ZaeIVZ/gevHCLYukmUUwOPkV2Uc9Xf5tZYqALP/t4rkTU5XDEMPC7tiCFAM3h3kWEAKy/NDV82RJI44HwzJhF5Psjg7+1srsPSePxQFB+kFBi93s1yKzzDIS1rhZvm5r+56F32+FDYXN2FvRHvMsTRGQ1Udu8X/lph6Lcp9naYqAzN53Drmfg/k9JuA9K3MEZP6BS8gDQneXFIZhWDLAruuuvh7o/m8rRz0ff/2gIH0/94/cou6WN+B5YpFiJu8QhmEYZuRY7LoMRZdQBNrIf+soIgAAIABJREFUxQXThMpOIZALAAAA0KL2QiHtwrUXFLQXFLQXFHYUtaiFLeQyAalA+WjBaLOSOq6muIFCJuE3jW9f0FE6uoG3QiriNyofKiqlNvQOwjCsGBxkU7qV7TvLK9njsx4ysaSbOPzE0oqeDi1Om3KJoLUoErqy23JsigSWDnA6CQVDlFTWtjIFA2xaG4GqumOoVMBqJxQUlFThKeNvsKFCb1XMvSNLdphljc/qDDRnufxxdMc99Jh9LmQDfZ0NFQVKKgnN9MnqFkUcajNuuG0VkcyYcvkkDA/yaIUh92+ZQKiZCIaUyWZUtbcXKH+wdA5DLIdlIiqzt0zleC2L1z+cU5Bx+pm4ztGHCtrba1l8Jo9D7OksaG8vaO8l80V84civ7QXtvY2M3urRX6lNDHp1D3X0V65IOHouF/cwerEqnRdQmT2iWcQtYJgYeerCAzsMgSmaKi1SF3Lk9APn/Ca2GKRFAAAAYBK9UCgU2VcsNC1MfdYYFHJJBcEOD46NDWHoEAmjBmm29/tvd//hX6ZqGAPt2PC7m1bvOGqfy56LLR5FrM7iyAcm9jYzDGE80xAjL16zdEipoU4ZuKgLOXnJ0jWzrhcELgAAAGCICe6Y2ok7typA79/QCy/YfasftNZ+giUIzwqDQm4PGTdyM5BHgEzI6SZlBNld/lVv2eohVq1atfrnDXuN7rhn1k14A7JHj4jV2dbW2jtl1eLzB68L39jJmNItYBjmdtY0dPYBtwAAAIARJoheCPtrizqKhn6KO4tbZ7WqDzCMhM9oIxSpUY5r6JiTuAUAAAAAAI+OiWsvAAAAAAAAAGYE0AsAAAAAAAA6BugFAAAAAAAAHQP0AgAAAAAAgI4BegEAAAAAAEDHAL0AAAAAAACgY4BeAAAAAAAA0DFALwAAAAAAAOgYoBcAAAAAAAB0DNALAAAAAAAAOgboBQAAAAAAAB0D9AIAAAAAAICOAXoBAAAAAABAxwC9AAAAAAAAoGOAXgAAAAAAANAxQC9gGIbFdFJh+ENLDG2uBzIH9NehQ8MDUfh+9cOc/AqMobf3Iu+4B9UNyYSCcyHei7xDr5Q0EkVzM05d0xuRHLfJ23uRd3IAtQOZj9oZ4L3IO9KqiUEfHG5RF/L7Hf+MZoZ4yr5wfobXA/La2ZJHO2QAAAB4egB6AYvppPzAm3fCK7o40rkey+Omn4AO9LH3yiL1CQZVj3eQS88HWL0OQQhjr9/QSacTfN80hRCQ6c+JJVnsuRqsLqmvQW1wNn8ZghDGwZYlqRv8HF81gRCQ2Z7i9hbhcJsBekuSze7LXuktUxmGgEZCmW+54JPbAQwDAAAAYBgGeiGmk1Idz2y/6lellVtwururcnIYj3xYjwUuIcn6zpVrXhiyulvAwp5ITMR8cwgB2axEom+iY5dbmSMg6NuItKAOAU82R8PVIfxmKMz9fVMIYeywPy/vVqjv/8xNERCkn1qdy5SI5aMNB+hFPpc2m0bXdPGm6FJAy3c/s8E0vpEmeKRDBwAAgKeDudILuZDT7XXIe+X6pHjqHA0BhmExoynJ7fRmY+RUgQsOudTv4g8//KC3dOv+B6juxzS8RwqXgDIxvXUntKRPoC4MQnxd9n5Xi5eNXbenYtFNpZfCnF/Xwi0opJI/orx+8PI6ll+H5ep4sE2ErN/DvX7wGvlJcGmlMWfYGT87N3KJrdnfjH0vV5Fy8akb3GxehiD91Oo8dbeAYRiGpZwq13O//O6QOmWSRMrGOpzQ/90lt4P93EXBAAAAYCxzpBcyaV9lwbrXodfedjoa1T91+0eCmNGUbGu0/rQHYWCqpoMiHp1SgPK6tH3B6mvPgl5wCSjTP05fcsvoGHvS5LTYof3eNHXdnlpZwqSEZEV+bWG3Oj4vgTZ53IKVlB2z2AxCQNAbAak+bTr0CwYqK3GDg/XffVHWeDKeRnZPCJhvafG+U6zDzAyjt/JQgNOrkO/lqlZSX4NxhOf7po4H8uvKOOPdAobhIcE4scbINoU0pWBwsA6Hlx91ygGCAQAAnnvmSC8UMh6VdO0bkzffD3Co01G0XSqkEet8UrQ9sYkZpGTj/SvW/JnWr+W5gEnMMDd8MvWC14Qtzcmo0LYsgktAmR7ef/h2WM3AmA+fk1+WvNY58EgugSAQNzcXn/J1XBdfkMQQDmg89Y4yWFOVstUZQkDQD/HFqQydZVD6KEVH/exfsQ+7hevolspgmJuCCVtoBSGMA/6s7+qddn+94aigz11iTGvbOySDtRWxKx2dDfOJVTypVDHhc6Sc1Hurl1/3reqcKkUi5aCvL/7xZmhDL0iRAACA55s5q72QD0roLXRiA5ulq2I4Prc1BXM6TMtTLLej0uf89z8ZaRG6UPIE60VXQXy0v1uelkUhXfkuFw/8ctIhfVzoAh7kCfpbmOweoVQGw2Ixv7OP2cYTCqdwCxiGYbGI195Hr6PTW7kDfJ3ZhSCvIGaZnQnCNy20o18OwzAs5/E5LQx6HZ1NE0sHp3r+OKR9HFYjk8uWyuQwLBSwW5jMbuFkbgHDMAwPZN9ftnj3w+Qm5lTLSAYybnz73W6LrDYQwAAAAM81z05pp6CHHnPP55iWesFtw3qe0vvhWABJ+7PAk6sX3cW+VsbnnLTUi84cxzN7DX53yul+8qs0eenZET9aQ4iAjMhOXRd0TIeB7PtLv9t6D9045TLVgYyb33611RhDYQG/AAAAzzGT6YVCoSgyzSrSriOZWIKBfJZbt2v7yhIxPSN7zSX8BJWdcj69N/JacaV2nUk5/bnWIV8scNNSL7htWM/Dny9YYVY4jXPAE6oXvMZMx1NLvtl0TEu96MxxOrN66d7bcUQd20VfRnHqrx6xJviOiT6glob88+FxltNIajwpegEPZP+59Lut99BNWvjFjW+/2mqMaQN+AQAAnmM064WivfKwnoeenuen78anKxSDeZl6eh56eh56ep4LF2UXqzSUDDT/peehp+fxzdfuH79v8dZVEgzDcomE4BOpp+ehp+e9bGVe2Wh7GZ/ZeHeoq2/cv/o/hw92llPGvvggh1p/S899wVce3+ml58NSVgfhxvCre682SE1UPXcN8FuiU/T0PL6Z7/q/d81efMns7f+6Kofqv2V/OU7zuxb31sffWP3Jot/Cxr26ChxKmd95vSGWbztqFZU7a71gENIcT+opWbX/okd8brLdCT09va2/30OR1NrSauKtf1M21T98I6CMpfZ4T0Wk2VE9Pb0Fn3/83j9ffumNt//96Xxl891XbDImeGvc6ojbO5evPe2aT5/x21CBQiq5Gumh5+Gh5+H6kY3lq8Y+Z8taxjlmX0pB8k4Pjy8cbP5h6nu5khBTkWEYMPQsDz0Pj83pVQWqaQdBm1dqzCoPDz0Pt09sLV8zgRAWNh85uynbxzu1aCrq5Lc6Jkau8BjtVi+hPJ+hde5rqjcaeuyHL39zq2if0nJaA/Z/9envvvXdfB29NAAAADx9TBC9kAxQ6ume+6AXXkBef+jx3e7cdCKDSGTUE2jomz7/94OPuVIxFHJxN5FBJNJqKkp2v2L+1tUmyQDNz8jHyI1MwFFjrri+8qbT0WgOPNJ8UEQlMohEWlVx7YVFlpr0QiGTitqxbYFnPd99P87SOWbV+qwEIoNIZFQVNlvstP5unYphyOVidj+RyCASqbkJ2Tv/v73zjmvq6v94EGQ4efpYa9U6UWptrdaFCydW0YrWrbjrqHsWR5WbhLBBiGxUpgIyZC+VvacIYSYhAwTDCCRk3EByf38AEpIA0dAfT+V8Xu+/7j25I+blfXPO95w70c7AnEggMAgEBoHQWEVq6+PZwqt9F3B5w/crTPrsvGCSs9zOLNTdfNYugUAgEAiFKeHOV9ZPmzj18/WCU53pfXPXpt9vOicTCAQCgZAYiL+yff4WQ2ObR2bHD288+rSouym7Ksntxt4dxzHPUzqbvnlueX7r9K1noYiqj8cTcJrrqgkEAoHwyuPufr3FO4w80whdIdHqW/v4K7s5x+uG/rY9RoPUecHnt9GbGAQGIyI1ZKMdhJKtF+0t7JacvGh9JzMUZPKVtc1kS/yumMxQOoNQmvT7Y1tVM6tVEblJHw1DCDNamisYDAKj2jXc4wczCOXy0updNYHBIDAYBAbzg1TVRenb6ENPbSfgsLrh2SEUBoFBfhTsNtvK8js7zwfFtTWD0I9A8zu9aPram6Gl9QN1X1C9j2hPXns3jtQIui9AQECGbfoeHBGJ3pnilUaYb7SoKK3mdNVfihBuPePRbvQ3c8X7MBAEEfHbqNBik9FnSxKx/o9SG6jNHQgMv/d+pjbO8mK09INM2NZQbbxCpl4gCIIIWlrf3HNQHm//y713FVXsTksQtvOqUhN2T3r0R6D0XFZ+TVHm0clyDo60kDPt90ybt8oiU+ZuXh0h5J7B0tVHnLLqWjufY0IBl0mIdbv82+fqBac6/fGlPZt2W8Qx2F2PxnZu5SuH0zt19uOiifXvKbXMruW26wuD0Kc37bnt+7ahe70rAae5MMj45NrFB+6ICUZ3KAn4P3evkXNwhBJvdWrFsv13X1YM3PZTUleZctTdvA+9QBAE+VCZfNDNAgVBKCvPy5nlZRw+X4Qg7byk9MCVtpAqPvhhJUPq7325BkcYxDTDJ9YaGJvf3xSmMWGeEOmsAA2L9/jJCqNp/cK+ukHhtUZpfqcXTV9xJbCkbqBV0aneR7Qnr7gZSWwAS3iCgIAM2/SnF2XWTiOUn/s09ZaDjo4GH18VNavbvfxCBLfVmC6H1L51uBvC7FoZWSTqaG0tK2/8IGOSnjx64fL1jFA/hvh/0XB9ec6xiXYHPZukPvFJesGpeev75+q+9KKFlPbo4HffLzvtXdXrb2SFai/qC4L+PrBkq1EYXfxMhCjzQ5s3nfQu6dnGrnptf2rnlsMOGb3X0hQQX9mfXrnA4FqQlF98kl40ZD65+qv+4OsFg5h2/ImlHHrhdDiFUMxv/zgZ5V1e6GZ7CGXrb1ZWL2UQ8uhFvW+opzYWPfNZYvj7NlhsDgjvQ975x3bjINzyqLd58k4/7itAL0BAQEA+IQPqRXCM5HYhP//1zyqYb29Xi2+F22pMdTBjVr/KlWvGvzx64frt7JikXpsHSy94te8CLq+ateRisIwaQ15Nod+V1TOXStqFYnrRWhZnfURv3VGPYrGNrLI468NbNxzpGRZBkPeZ3rf2rthpHCV5Flqyy6U1qj/L8ItP0ovmHK8b+qt/veCeyRy48SdEXr0wdruUS6aJbVdQLxjExN0uliONbQ6kVZZze08wFTY+D38yFwepOkT40JlcmZ+XNzS/04um77dIIzUPMIm1Uy8O2OXTWwdqCQICAvLF5tP1AhHBLUWGKphRFyt6bWyrMV1lMv5cqXx/JA6tXoiaqpLNt307f4OtjJkpzZXJ1rum/7TOIk1ifF8hvRDCjPxg3AHd9cftk7rKEj8UheL2LNU7+DChpWc4n10WY2U4X33s199pfd87s6dN+s8o1Dz9c89KJI79SXrRURmBNVy25OCDcOJn3EbfGSq9KMoOXPMQjTJ+eCKLTJQsixBmpvgutoZQGG9TYn3jZ98bgiBIrs26H9ZcfF5cO6ClZJktnbXqWsiAL0IDAQEB+YLzOXoh4JaclKkXq006Z47IkaHVC6SjseINdpfs7oumigTz7ZN/3mCbLbFDwYmpwuaSKLMD2qP/O3W2tra2trb27IWb9vzlWfC+Rfwx1EqINDuwbMHma0/Sy2WFTJcu2vwkvUAEZS+hg9sHvftiqPSiINN/lS3Uh14geenPltpAKGMPTGWdQm+iK8TrzV97ziu/hjNQl0Se9arZqy8FED5wQecFCAjI8M1nDY6Up6wdiV1hUy++9d+lF4iwseINbvfsldfCpPyijZrrcUZ3sPWirTrDw+bacfvoip4QqbUSL0Lv0osVy3bj4uplH0hGPk0vEEHZS+iIwdYrHjmD6RdDpRe04mg9B9M+9IIVGeM53wxC2QS5UBoVmSfaZRcF8trFC0I9D9gFCAjIMM6n64VQyI0KHqNqciZCvOTzf1Ev2LWtyc6Z+X1cAJua9fjk+iXbnd9K7BE1lMZjt333yw7not47FNILdsVru1M/j/1m+tzlBmc+jo/IuK6mwmBoz4qVh22SpDvz3+fmJoeHV0pulqEX9PT05JgYkuxzCGoTnS9t/f0ELrb6M+6kjwyVXrQ3FV33xGtCmIVheenNEsWUtS5+bjPQ0OwXmUkNPDlWNu8rhXi9H49g4kob2uWxC0OLVCKzA9gFCAjIcM6AeuHm2OtZIWrnV96eYqamE5/ba02JIdeLdkYl4dpqu+Vm1O4tfDq10hpX2Vedv6idURKL2TNn3V9REh0YHYyS6Ad6kn7BrS14dn3Z2GlLDZx6FutqLE/An5wzZ+2es76SBRGSNyzgMEmJnnd3zlBWG/3V5JlzPmbZrj8fpfTohhAmvnb4U/cng8uBEt/l+5yYF+52sdVS8xGa8vzu7tLfeSPo4wfoSa9iggLf9jVzoYNXEnT/yK7tN7zzB60DY6j0AhHCpQURunhTVVNfs8peBRbF+SGb7LEqxu63Sui1Cjzu6yJv6upf8cymsgcylNrQS0v1rvkX1Q30BjgQEBCQLzwD6AUKhZ040+FBctemdrjy9mzr/6oHeNbwepdwCnmthNPjBk0vuI1M7yPmMvVi/39sFmKln18i7ocPAZccpy0L61x0i13bGGUV5kno56VXQkF9UdTfx5Zsd5ZY3LND0EyIf3hiwXy97jkd3Jq3gXYHFuzQW6uiNmrCsp0nvd4hCII0EWLNdo5CoVQmLtyBed3vKpiM4iirS1sOQwF5VeJJD7I+u3a01q+nxQyjnVeb4Xtn748//HbROa3rcckqf+Xw9/k/bKKJXBmLiDTk+P61c/WmP12zmhAEQejpL/2eOiXQ+pkXKeC8fXH/8JkTpnHV/V31J0RRvUA/ufmW+l7yQ3Kte9EOc+KTfBZZm3xl7X6riE6FEQRBivPDtzni1NE2+5LKijgdn7+GWF2k0YadVx9nkFgDdV3Uhl5buf26TwG9DXRdgICADPcMvO7F44pKU317LS28lhZ+9hzbrw3ziMSPq2GKYE6FkZa9lhZ+9izrcUroEZo2Wlp4LW2nRSfyqTIO2sFmlN7QstfSws+aafOVOlp5tOV0LbyWltMy3aSsrjbtzfTiKzMfThyDVh5pPmupx6UgJoIgglZWqpXXzGmWY0ZgVL96pLslVWLSh6ij40MxEfsb7psZeC0t/GJdX8t4Nqv/V2oKBczyFMdr+7bel+jBELXzWRWJz+/qT5iqpaWlpbVwvcFffm9eBTjc0r0fUlVNq+0sx+x4nx90WxeFGq+99rI/uZ9zMYrDTa5s3m/1pkniDejtPBYhyvrMMb1T4mtfCOG25qpXj+/tXzR5ppaWlpaW1qx1+88/TqlrlnyBeld7PvtdCO7E2glTZmppaWltPnY7oKBFhoeIR8Ahx7tcOnfprr9CPRik8tTzPvZaePxMG8txJmgUhB1naTMdj9eyf3I+o6K0q++oITwxVM/aYowJGgWZjLeyWROR/ZrBR9qqnaP8FlmajsJAKMhE08pmf3JpAQtBEKTsXdwRT7wW3m6yOU4NDaFMzL+xtdPC47Xsn94soJClxInPY9PLX29yth1naTPdHq+Fx39niVN/HOVWXvuB3z7QC1H7SV3k7Y2XrSILa2E55GLVBdvXhA8CIBcgICAg8tRedDBrmojEZiKxmUhqJjX06rYQCeEPnbvEITWT3/NkzlAVdvBltCc2V1M43RP+RB3t/Pru7aTqlnqWEEEQkVDIaWrpbs+k0LjSox7C9o6Wuu4DUlubB1r/CEEQUTtckx9udWXTXckhEqRDwGW+J3aGTK1paINhDqup9zyPDpjT/J5IJNOkazR7pS4v4M7BX7ZDsdLFl23lcbZXD+24HynxbjchzGmupxK7Q3vPYPW3SlM7t4VR0922rpEtx4pOQj4r/4Wx0QOjZwoIhgDm1LU0E5ulYdZxYX7Xg7aDzWHRxPZS2dy2DhEiFDDZrdVi22s5/M4SCZjfViv7sC0feH28P72dV9fa0qsxi8vpUGiUotBt9wm0S3pVi2Cgw+Q5bDVEP82lsNrBsAgICAhIP3ohEonizmNlTUz90iIU8Gh5L/FG2x9IGcagpaO5OMLiwA8zNxy37TW9o42Y7HpBZ/GWIw4Zsvsl/uEIOMyCIOP7Jn8r1oXxZabQbf9pnGtyeSM8UHdEnsNvx009MonNoOMCBAQEpDN9vDGVnL17lt2ksRAKZTppNn7u/T6mIHwpEQp4rY01Df12QCh6Bm4LIz/C5fq2SdNn9WTGAr1993wLBuiZ+Ecj4DQ3NTWwFJlX8YWG31L7gcke0C0QBOExa+qZHOAWICAgIB/TR++FgFdLbiaTmZ1Ug1c/Dko6+G3NdeReodbWMwcokgABAQEBAfm3pe/aCxAQEBAQEBCQzwrQCxAQEBAQEJBBDtALEBAQEBAQkEEO0AsQEBAQEBCQQQ7QCxAQEBAQEJBBDtALEBAQEBAQkEEO0AsQEBAQEBCQQQ7QCxAQEBAQEJBBDgppf//F08hq8C1C5OEVER7yqwX8u4iuFMjz01qks3bKlClTpkwhlmcO+TUDAADAPw0KEdC/eBgtH1zzEHkIL+MP+dUC/l0EE2B5flrfzpyHQqFQKFR5SdKQXzMAAAD80wC9AHoBUAigFwAAACAN0AugFwCFAHoBAAAA0gC9AHoBUAigFwAAACAN0AugFwCFAHoBAAAA0gC9AHoBUAigFwAAACAN0AvENQ9xiC25cufyrza1w1AvmrMcHB0xPhklvbeXxCQ932hpPtHS9WJqQkB20B4H84mWdodfJxa2Dv01DwJwgau/y8+W5hMtPeyJWV5R7ssfmk+0fGT0tvA9p6tNHl7vtLU7gU7s/1DBBPjO9Y0rb8SYvO7PM4BeAACAYQXQC8QhtuSK0Z8bceX2GcLhphfMbEcHu3sub3K4HJr4dhIh4rgLRgWCUMb4Y0G+R17gVdEQCkLrBEfFfRj6y1acwnSPFTboERCEMnY1TXym42KpDEEoCG2QmFPZ7U+ClpI3ZmuOW7qX9msYwQTYKbXp6p+rda5H4/o2DKAXAABgWDHc9cIhtuTcuQNz9/lgMoRyDI68o5FCo8Lyh/yOBgVmtuO9C4aXHF/Ucqi9drXmeUa6zURDKMh8Y6i/UajnEiwaBUGL/F8G06thWK6DV7x9afjM2+JdYetQ36YMmlKMntp+hYZQxlbH0yOuP8FPxUAoCNocl5rfSO0Qu0FBS4LX2aVGT8KrG/o8WufgiGNq8VGDpb+aFFukAL0AAACAIdMLaltdnsUG81nfP/Um0v7p0/WpFxl1DyysdJaYXkvhu/Rbe9FU8sJ2/1cTJmjOWLrur8DcIf9nGwQYMc//unLLyLmIRRb12lWVmxO43QY9wthuX1xCYnnMeQ9LFfnd4n3y3UDHCZbm/zHFqto8eVBY0DLkdyoBXB4R5fqjGVrJ2Pneu7ysfL819rgRELQ5LrWgt1sgAjoioPIJNmdXbMcEJtSzZR+wu/ZC6BDktuL73TvxJNtMoBcAAGC4M0R6wSM3pr5coWKsNt5y72PCP326PvSCZxkQ/NvGFboQ0Wmg0k4hj8xpTE57fnGP9vJrX4JelOT7XDx/4qjTq4IOiV31aSaBj0ZCdvviEosasp9Eus1Em+uFRSc0yNdvwae0sYnpGX5b7CGU9f+kXlBidrhaKkPO94ryahhJt57afgVZncjILGuVdovOOyJVuB9c/vuNkKICvqwD9pR25vDRdw2nrje9HNboCPQCAAAMb4as94JNz7yzAD1uorMjgTo4x2yrqs17Ze1XKr1Lpl44xBHOHtn23SLszQyhfDNHigiRtw7+b+pF46uUV14vk97J2Z6Z7XDHYMuBv5wJEsMigpLYRB8da5czKRk0DqWyOPyIk8XmsJikRkq7fGMinRDyXuzAD5JewG99Q58scXzmXFHMVvyLggtcnzlMt/N+VPa2iUfNS3m8xMr6ZHpWBYsq7PtTQvYLzMofLtiFVzfK2Cs+c8Q547W+9vfr/pYxRAL0AgAADCuGrPZCBFO5jcRmBpnPH6RjNpdXhQSd8JTRFyJLL1pwHviV0xavgojO8k5M/R/WC9KLQB9z+1dv5WufEW92cPfGww7SXRcCmoBLbmWROVyqSEDv4FWz2SQW59PcAhlcvWhOQ/viv7bxtC0tYg3Cd0XltZGYrGo+nyYS0Nu55BYWqY3Xn1sgAjoiqE5B//LTr2dldmD0npjafuPUgm9W3LscKtmBAfQCAAAMK76c0k42pcjnqt1ROfUiiWx089hE7VMnw4Wu/369oL3GYW/vfyinXlQ9szi+Re8UNrl2kPqNpBhEvfhAeLnL2VTJdrD04jNpT7yp84PujRdvpCswJNa9cHL9e8pUvS32RIkKDKAXAABgWNGfXoj4tFdX/V7DcpVetrPIYZctpv+VKe+52aT3Qf5zD8RTZB+f2krNdz8akibf2eF6Qswd/ITpD+XUC7uwzP0bpn67wMwoB/m360VLwROT/VrT1+2WUy+qo++dXP7T3r9cy/n/VFHtoOkF/fVpL9uRaAg11HqBcIOxy+ZuvuomPUlVQi9cshL1tWbPOx6NewMDvQAAAMMW2XohKovS08RpapqN1fCJ4VMFkc80NU01NU01Nc2+/sb/Tc8jn8ZvTrmgidPUNNUcbzp6jMn4S+mIgC5kkwssHDQ1TTU1Lb6bFZjU057Coiee7W4/TtPsm+0xZEmBqG6qenNKEzd+nMXMOYFJMLmh/PXJzo9ommst8HpOFmvPrCh199LUNNUchxuthlYagVYdheu+VOtfdMOzYBoiQy94Fv4vNv48Y9rO52a5fevFh+Qk6+2amuM0NcdpTlv+nasAAAAQ2UlEQVSw5S/rVwrrRV2OG/TbuK5jak5fu/+2T7jT/W3jNDV/MjhtX9Lrq8jL8rig39Vy3JxN++1eF/U6GjnE/dpaTc1x48eOUh85YoTKSI0xY7uPvNjwtnuFbDMryfU4u11n1Vl8UIN86jYwLTku4e7fm5lqmptqmptqmj380c5iqqUsvWBm2Ye4zvnYshMHH1tCb3VozrB84TzbzFTT1EQVg0ZBEAqN0cDhxnd/xOBVamGz1GXA5dFxT1fYih3Z0c+TROAMyj3CWc+Oz59pCGVXSvqrpF7kVh/fov2f7c4PYthALwAAwLClj94LPoX1gRhwxFhJyfv8JdMJG8PzPxCZDFJzfVWGsf34ry1uxXc/mWAqh0FiMqrqSK8OqWLHX0rjNxfYbbU0wBc20cve3LEdOdp8p1vPipAiflf7mrJ0o6UmsvSCLuJTWkjFYdfwEyZ4PoCctRcExTOITAapllCI/x07/Scxw4BpHW3VTAaJySgnJEYcmGRzwOktk0HqpLWJ0i6gIzL1wi9gw9J5sy+mu+TJ1oum0iDbPZN+XnPM610Jk0Fg0t4kuR79ZbTa15+vFxVVr03PrP9lh5FTOaOEySAwi/2fXFvz3Up9yAHvfH7fxsPWRd1fBavY1/b46nX7b4WXljAZBCbjTYzd8Q2jf9572an049fFr+a3ljMZBCbjVbjp/t90dpi+TGUyCEwGgckoa2slS9VVdFKS8/SM/vbtt18kiT7nLiRprIq96GWlgUUvD4wIpRGZrJKI116rLKARaEm9KCsI2utsooFFrwqJia4hMlkkJotU+TbYwNlcHWd7MjW97OO4A0zlccgtLBKTRUpN8VpjC6FsnuKK8uisrk+xuVKzPKjxhp52o7EYvejE1DoSk0VKTHBfbIMZZYrbnZhZylT4TuFsv1Pzp6/8I/htvkT5hZReUE/oa49faHSpd/kF0AsAADCs6HtwBKYRzB4qjcDqWua3MCkfa98EzKrnh6Ex/xXvw6AjAhrcnI9djh19Oin2hotjIamtjYZwyAzfp+rjzK/GSI/xU9tqc4x1ZOsFIqALGsvf3LFVGmc5704aq9sSRDCZnhd1eKLNEU/p6SGkmryYo5Nt5RscYZo8tV04Yd7sS5musvSCWx33/PLK+SsMfUurBJ2VpzC1oy0nN+Dy3s/VC3ZZoMOJTev2YDM/rjMBU6hJNld+//l3yJveWtkjBNRwn1s7V/1+PbyK2F1TSW1vS423PqL74+bLzxOlDp6Z8PDI7tVyDo6kx+L2LV/0293A5EH4Ab1PuReAV8VASwMjIms7K0Bp7bzqvCw/fYmJqXCRf8Tj+WgIZfzofGYmpVsORLyCJ8EucyBorn9kdA1J+hRvM33WPxxocKQpDfLFT0RbGaakFbd0mUcHrzo10X2xNaSCdTctK2pQ8E479ULnZODbfF7vXbL1YsHNiy8bgF4AAIBhS396UWZhN0LZK5TdWw74VFaAh4oq7mqcpF6YLjVWHW9xI4IMd08GEXGqW5vIPK708eXRC/ykmQGxLPGzk+uL445NtD74RNohPkkvuBZ+fuuX9KUXJZWv/97535k65xypvaoTFKq9qMtyubP3R/3bHrVi99v6zsfy4LqNhjbvejaWlYXfM9yme8w1pvd8DRrllen5VXO3n3MolfzGPkkvirMfn966bTD0Aq5MT3u+0QpCWbndys1tFLtaWbUXNAG3ms0mt7KreTxaz0wNuNArxFUbgmb7RUTSP1Mv3mZ46dqilWy9HlW8Y4ldRgcpcpuLJQpCb3+dQVCwAwPoBQAAAHwKA+qFT4zEwwym8vNfLlFBj7+cIbadBjfnm+pgxqwLL+XIM6Ivl15826tugz54esGz8AvYsGDmtD0vLKRrL1pz8r2OrZy96PyzrN7DBwrpBavE7+HhtWsPWL4VuyNWsa/1wfUbDlkV9WzMzXh8Zu+yrdjIAokj0BLML60eMV//mN87RfSiJOfpGf0Va/50fNmk4K+nJdvxpfNUCJrmFeRLrhL/rgYu7axJuPQcP84MN87MRAOLHqGIXsCF7v5OsyBoTkBMYh2p1z9ZQ9L1J7aaEKTiERZbU6nQzXbqxYH7mRUD1l5QT+hrj9/66H40C9ReAACAYcun64WAJmAmHVdBjzqfJr4Rbs43XYkdfyFtoCUEOhlavUAehqbt0Z00eZHVHWm9+JCcaKY3dcFK6zSJMR2F9ELEJxAi7huuXPg72re+86ZoUf631/6wYadrJrnnS2tKiDI1mKusoqYxauzYMeKMHqWmqoyat9Xw2VtF9IJGDDc6uvTHA7cfVypY2lmbdOu5nRIETfcO9quuEt/Vl14wyiNPPLUaa4obi8OOtH1yPz+3hp3rGuQyRxG9aEq552X3XwgagcGOwuHGmoqBw6qi0UoQhHoaGk1XUC/CLVdqrb/oVEIbaOZIbvqOuTPnGoaZvOYDvQAAAMOWz9KLluSTMvViFbZz5ogcDLFeuCRU3bxycML3585ES+lFfXKC6cbJC1baZkhcmIITU2mtxc9sDs1SUVUfPWb0mDGjx4yerLPjSmgVUSC+sFjjm0jcDp1fNhsHp7Oby6XhsEjtkguRfZJe0IVlniaGm/XOmqXXK6oXN58/RMmtF6X5gbscMCpoaIbPS39SOZtDgfk0keKDI40pdzztvoKgOf5RsbQKdhtZBtKloJ9Kxt+r56265Bv/niX5pUnqhQdu2pR1m6wrbTLAuhcAAGD48lmDI2/DVo3E6NqKL0H9L9ML19xmrLvl0ilL11nUSA2OZOc9PbJxsPWCXRroiDE85Bgm5goVHBZZ8rHX+CYSt2PFUn1cVKHcB/80vUD4qZHoPTs3HXVLKVbo18PMsg92+lZOvahJvOz7UBkNzfAJCaiu7CkrUVwv4Hyn544zIGjEk5BQaoVCd9Q32RbL560/7p+fy5XSFAm9uH1+8YTF188HM8CqnQAAYDjz6XrBp3JDvFRVsecjxccO/hf1opVUFmcWlgnTZC0KLnoUXXhqz8Ypi23v5vbWC/hdedztbVN+2Gwb1fsUiukFwd/uiJaKmvro7xbv/jg+IuNrLy0OMdqvs2ifyfMPUm3oSSFxvo7ylHZS4gPiXrj1sfQFrSHF5tqWXw/de1qlyK8HLnoR/eQnCFJyefawrNe/iLRelOYFbMdDKAhaFRafzBC7qs/QC2r8Ec+H2+NTCzqXvoDLwqLcfjKFUA99nCuL2ySOQIn5/YntzoRMhUo74Qir1XNOmQdVfZDxfYrrhUtuhsH3s1bdyjdLFrkCvQAAAMOYAfUCb1/ea4aIoDXlnAZGfU14GVdq5shQ6gWFUZp6Y631L+js7i0kalWaGSZL2NcbU3ObMG4Wy6YsWy/WgRFexkcEtMZiP9yWSQs3QbliZ+eQIj3Pfa/83QJ9ux7tYBR6437TGKWts9cpdoBbhqnt9fGRZgZaSiOUR6pqjNIY1cXk1XuM4mt6TiQkBT++pDPv10O+EjUW1SFhvjirmHyp6paSgudXdulvvtozZzXzdYx3oF9CX3UwIl5KBLRnl95x91RFOjBo9eVRJ9zNUJDlrriEQlb3dmaWfbDTFAhCQQ7nMzKpAjoioJfk+m+zh1AQNPtZWKh4+UKPXry45ue+5nmQL6lc/CzSelGU4a1r62RUmPe+uyOhgxy9080ShUb/GBSXVk8WO3i+y3PHGQ+9XapK2AoMjtD9ji7VP++XK6PrAumtF+a4k5NX3DsfzHDMlfy9Ab0AAADDigH0AoVCq43GXYnpfM7R2lkpf2pgR6n7hLMovWdVUHkNSSfUB00vuHWlHgdMZOrFPk3L+fezpT/Cry0OvWo35UcvPzINEdBbycWhD7x9K6lIny9kF7m8qbh+8Y+pS3o6MDrXvRDxK8gpVmd/mLpsC6bTMDikKG+TDTO3rtusNEJZdcbqHbh8mIYIiopDb+oro1BK//lp04VIWn+lDHU5bvcPLzK496S6pYLTUtlNWpLrH+uUJ67Yc7vHMGBqc95j7N5ZU1bvsorr6pBoLfQ0u7z3sNmzWp70WWjN2U73DJasPY5OqaMhAjol3vmZCyappp9XitA6CB4Yw0OHFevAEPHLE5J91lhAyhjH8+mZFAEdYWY/CnH+Dg0pQRAKQqtgsRsiXqUw6MKmdHP/RxMhSAltdSAhpYRFRwR0Qm7ADkesKqZz5ojHPudH2m4BnsQy8VMIKbGHnlij0Gi9mOTcJnp9yUsDZzNt/6j4WrFJIjCVUhiw4RFuBAaj7hkaQatEBHSkKeWOl/1EyOpkRhaRrUCVSbXLhaV6t71j6K2yD/JRL1yi/FZp6etblVllSHZdAL0AAADDjYHXvXjZVGC5CqOhgdXQwGqMNhl9OoXb8/ZqGr85+WznLnWMMgpSUsFoaGA1xphNku0NlFZ6wsmu9liVEZCSMkZdA6uhYTZtTlByV/vqxsrXR9UxqsqQkhJ63NSHh58SEAFdwCh7dddOXQ2jrAQpqZjPXSj1OhKYxqwqsNsJqapjNTSwU+c5miZSOisb+tALxDVP9Cgy/8Qxg1kHgjpnqH5ctVPEp9Tl+2D1VdQ01DU01Cf9uOKaf1RBqNW9TX+ntVbx2zrXGaPV5z19sAmF0pyz4Zp7TT+v8KDHBN41XLcXl8OR0DKakJuV6vrHHxv2eBSIDxlQ2+tigtG/zVVV09BQ19BQV1+w6dzTWJhLlbnUpohPIUYbn1mpoqaurqGhvnj36RdF1cL+/16HqYxkm6t/HLrsFqbIDFUhn1pbGnHU3VwFg1E3wWqYYEfaPDbwdFhlD60IiY59X83n0YRdy22VRb/y1DGHlDEYNROshglWDYvWDYv3SwvZ5WyqhEYrQ45XcrJpUv+sMDl232PrERiMmglWHYvR9o+MqSFK3J0IpvK5ufa+DtPQaFUsVsMEq2GCUXno7VBexOTTPn99Ujg38M+FVxwCK+plf/NIt1645NL+2Llg/d85pkky3ALoBQAAGG7IU3tBbW+j8FjdSC5rQROwxPZ2w2/r4/90uI/27J6XYovE27ApAl7nB+lCruz24gfv4PQ0+DjDom+9QFxzRTZBiYcO6HQOkYi/c0QEU9vbiDwWkcci8tnkdh5NxKe0t1HEz9vVhk3q68HfBS06wOi3RVuvRNOlFKQpMdbi1MEd12Mkd9GEXDKf1XUBPDZZIKPfQuxK+BTBx6vlVMszUULEp5S/vHnn9onHCg2R0EUwTcCj8Ljd8KgCHhXmUWA+TUIChHwqzBVryaXAfFoHn9r9cWo7LOtn0/v43b4iDa2DR+Vze12JghNGsq1WHkDjC6srRX0fp1MvjC4u++V8EDqO59LHLw3oBQAAGFb0qRcimBb1ByRrYuq/j/70Ig9xzRXaBCUcPrRyg2VNv29MVQC4rDza2HDuhKU7bvTSiOakeOs987RXH3GNHaCz4Z9BxKeUv7xx987Jp4oZxhdJttWqQxh8PqmiH7dABPRgAmx0UWfxhSAolusiVXIB9AIAAAxP+nhjammErhpmpDKEQqFHqpuMuZA2iKf8/2cAvchDXHOFztmwc47on9ILAV3Ep7STQn1vrh6pqqqm1o3qN8sNrkWQye399kz8o4j4lHZudYfkWhoAupBHFvCo/bsFIqAHE2CXbNgpW9hXvwXQCwAAMAzpo/cCpgnaqPBHhu7hNygMrBe9Zo78Y1cC04S8ariNLI6ASxmSfgvAYCGx7gXQCwAAAED6q734gvhf0QvAlwjQCwAAAJAG6AXQC4BCAL0AAAAAaf4Pnq+PvafGo44AAAAASUVORK5CYII=" alt="" width="476" height="99" />
g、xml处理模块
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml。
xml的格式如下,就是通过<>节点来区别数据结构的:
<?xml version="1.0"?>
<data>
<country name="Liechtenstein">
<rank updated="yes">2</rank>
<year>2008</year>
<gdppc>141100</gdppc>
<neighbor name="Austria" direction="E"/>
<neighbor name="Switzerland" direction="W"/>
</country>
<country name="Singapore">
<rank updated="yes">5</rank>
<year>2011</year>
<gdppc>59900</gdppc>
<neighbor name="Malaysia" direction="N"/>
</country>
<country name="Panama">
<rank updated="yes">69</rank>
<year>2011</year>
<gdppc>13600</gdppc>
<neighbor name="Costa Rica" direction="W"/>
<neighbor name="Colombia" direction="E"/>
</country>
</data>
xml协议在各个语言里的都 是支持的,在python中可以用以下模块操作xml
import xml.etree.ElementTree as ET
tree = ET.parse("xmltest.xml")
root = tree.getroot()
print(root.tag)
#遍历xml文档
for child in root:
print(child.tag, child.attrib)
for i in child:
print(i.tag,i.text)
#只遍历year 节点
for node in root.iter('year'):
print(node.tag,node.text)
修改和删除xml文档内容
import xml.etree.ElementTree as ET
tree = ET.parse("xmltest.xml")
root = tree.getroot() #修改
for node in root.iter('year'):
new_year = int(node.text) + 1
node.text = str(new_year)
node.set("updated","yes")
tree.write("xmltest.xml") #删除node
for country in root.findall('country'):
rank = int(country.find('rank').text)
if rank > 50:
root.remove(country)
tree.write('output.xml')
自己创建xml文档
import xml.etree.ElementTree as ET
new_xml = ET.Element("namelist")
name = ET.SubElement(new_xml,"name",attrib={"enrolled":"yes"})
age = ET.SubElement(name,"age",attrib={"checked":"no"})
sex = ET.SubElement(name,"sex")
sex.text = ''
name2 = ET.SubElement(new_xml,"name",attrib={"enrolled":"no"})
age = ET.SubElement(name2,"age")
age.text = ''
et = ET.ElementTree(new_xml) #生成文档对象
et.write("test.xml", encoding="utf-8",xml_declaration=True)
ET.dump(new_xml) #打印生成的格式
h、ConfigParser模块
用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser。
来看一个好多软件的常见文档格式如下
[DEFAULT]
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes
[bitbucket.org]
User = hg
[topsecret.server.com]
Port = 50022
ForwardX11 = no
如果想用python生成一个这样的文档怎么做呢?
import configparser
config = configparser.ConfigParser()
config["DEFAULT"] = {'ServerAliveInterval': '',
'Compression': 'yes',
'CompressionLevel': ''}
config['bitbucket.org'] = {}
config['bitbucket.org']['User'] = 'hg'
config['topsecret.server.com'] = {}
topsecret = config['topsecret.server.com']
topsecret['Host Port'] = '' # mutates the parser
topsecret['ForwardX11'] = 'no' # same here
config['DEFAULT']['ForwardX11'] = 'yes'
with open('example.ini', 'w') as configfile:
config.write(configfile)
写完了还可以再读出来
>>> import configparser
>>> config = configparser.ConfigParser()
>>> config.sections()
[]
>>> config.read('example.ini')
['example.ini']
>>> config.sections()
['bitbucket.org', 'topsecret.server.com']
>>> 'bitbucket.org' in config
True
>>> 'bytebong.com' in config
False
>>> config['bitbucket.org']['User']
'hg'
>>> config['DEFAULT']['Compression']
'yes'
>>> topsecret = config['topsecret.server.com']
>>> topsecret['ForwardX11']
'no'
>>> topsecret['Port']
''
>>> for key in config['bitbucket.org']: print(key)
...
user
compressionlevel
serveraliveinterval
compression
forwardx11
>>> config['bitbucket.org']['ForwardX11']
'yes'
I、hashlib模块
用于加密相关的操作,3.x里代替了md5模块和sha模块,主要提供 SHA1, SHA224, SHA256, SHA384, SHA512 ,MD5 算法
import hashlib
m = hashlib.md5()
m.update(b"Hello")
m.update(b"It's me")
print(m.digest())
m.update(b"It's been a long time since last time we ...") print(m.digest()) #2进制格式hash
print(len(m.hexdigest())) #16进制格式hash
'''
def digest(self, *args, **kwargs): # real signature unknown
""" Return the digest value as a string of binary data. """
pass def hexdigest(self, *args, **kwargs): # real signature unknown
""" Return the digest value as a string of hexadecimal digits. """
pass '''
import hashlib # ######## md5 ######## hash = hashlib.md5()
hash.update('admin')
print(hash.hexdigest()) # ######## sha1 ######## hash = hashlib.sha1()
hash.update('admin')
print(hash.hexdigest()) # ######## sha256 ######## hash = hashlib.sha256()
hash.update('admin')
print(hash.hexdigest()) # ######## sha384 ######## hash = hashlib.sha384()
hash.update('admin')
print(hash.hexdigest()) # ######## sha512 ######## hash = hashlib.sha512()
hash.update('admin')
print(hash.hexdigest())
python 还有一个 hmac 模块,它内部对我们创建 key 和 内容 再进行处理然后再加密
import hmac
h = hmac.new('wueiqi')
h.update('hellowo')
print h.hexdigest()
j、re模块
'.' 默认匹配除\n之外的任意一个字符,若指定flag DOTALL,则匹配任意字符,包括换行
'^' 匹配字符开头,若指定flags MULTILINE,这种也可以匹配上(r"^a","\nabc\neee",flags=re.MULTILINE)
'$' 匹配字符结尾,或e.search("foo$","bfoo\nsdfsf",flags=re.MULTILINE).group()也可以
'*' 匹配*号前的字符0次或多次,re.findall("ab*","cabb3abcbbac") 结果为['abb', 'ab', 'a']
'+' 匹配前一个字符1次或多次,re.findall("ab+","ab+cd+abb+bba") 结果['ab', 'abb']
'?' 匹配前一个字符1次或0次
'{m}' 匹配前一个字符m次
'{n,m}' 匹配前一个字符n到m次,re.findall("ab{1,3}","abb abc abbcbbb") 结果'abb', 'ab', 'abb']
'|' 匹配|左或|右的字符,re.search("abc|ABC","ABCBabcCD").group() 结果'ABC'
'(...)' 分组匹配,re.search("(abc){2}a(123|456)c", "abcabca456c").group() 结果 abcabca456c '\A' 只从字符开头匹配,re.search("\Aabc","alexabc") 是匹配不到的
'\Z' 匹配字符结尾,同$
'\d' 匹配数字0-9
'\D' 匹配非数字
'\w' 匹配[A-Za-z0-9]
'\W' 匹配非[A-Za-z0-9]
's' 匹配空白字符、\t、\n、\r , re.search("\s+","ab\tc1\n3").group() 结果 '\t' '(?P<name>...)' 分组匹配 re.search("(?P<province>[0-9]{4})(?P<city>[0-9]{2})(?P<birthday>[0-9]{4})","").groupdict("city") 结果{'province': '', 'city': '', 'birthday': ''}
H、Subprocess模块
常用subprocess方法示例
#执行命令,返回命令执行状态 , 0 or 非0
>>> retcode = subprocess.call(["ls", "-l"])#执行命令,如果命令结果为0,就正常返回,否则抛异常
>>> subprocess.check_call(["ls", "-l"])
0#接收字符串格式命令,返回元组形式,第1个元素是执行状态,第2个是命令结果
>>> subprocess.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')#接收字符串格式命令,并返回结果
>>> subprocess.getoutput('ls /bin/ls')
'/bin/ls'#执行命令,并返回结果,注意是返回结果,不是打印,下例结果返回给res
>>> res=subprocess.check_output(['ls','-l'])
>>> res
b'total 0\ndrwxr-xr-x 12 alex staff 408 Nov 2 11:05 OldBoyCRM\n'#上面那些方法,底层都是封装的subprocess.Popen
poll()
Check if child process has terminated. Returns returncodewait()
Wait for child process to terminate. Returns returncode attribute.terminate() 杀掉所启动进程
communicate() 等待任务结束stdin 标准输入
stdout 标准输出
stderr 标准错误
pid
The process ID of the child process.#例子
>>> p = subprocess.Popen("df -h|grep disk",stdin=subprocess.PIPE,stdout=subprocess.PIPE,shell=True)
>>> p.stdout.read()
b'/dev/disk1 465Gi 64Gi 400Gi 14% 16901472 104938142 14% /\n'
>>> subprocess.run(["ls", "-l"]) # doesn't capture output
drwxr-xr-x 3 gy staff 102 11 9 17:17 Applications
drwxr-xr-x@ 5 gy staff 170 11 9 19:56 Applications (Parallels)
drwxr-xr-x+ 19 gy staff 646 11 21 10:19 Desktop
drwx------+ 12 gy staff 408 11 14 15:39 Documents
drwx------+ 32 gy staff 1088 11 21 10:19 Downloads
drwx------@ 62 gy staff 2108 11 17 10:44 Library
>>> subprocess.run("exit 1", shell=True, check=True)
Traceback (most recent call last):
subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1
>>> subprocess.run(["ls", "-l", "/dev/null"], stdout=subprocess.PIPE)
CompletedProcess(args=['ls', '-l', '/dev/null'], returncode=0,
stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /dev/null\n')
调用subprocess.run(...)是推荐的常用方法,在大多数情况下能满足需求,但如果你可能需要进行一些复杂的与系统的交互的话,你还可以用subprocess.Popen(),语法如下:
p = subprocess.Popen("find / -size +1000000 -exec ls -shl {} \;",shell=True,stdout=subprocess.PIPE) print(p.stdout.read())
可用参数:
- args:shell命令,可以是字符串或者序列类型(如:list,元组)
- bufsize:指定缓冲。0 无缓冲,1 行缓冲,其他 缓冲区大小,负值 系统缓冲
- stdin, stdout, stderr:分别表示程序的标准输入、输出、错误句柄
- preexec_fn:只在Unix平台下有效,用于指定一个可执行对象(callable object),它将在子进程运行之前被调用
- close_sfs:在windows平台下,如果close_fds被设置为True,则新创建的子进程将不会继承父进程的输入、输出、错误管道。
所以不能将close_fds设置为True同时重定向子进程的标准输入、输出与错误(stdin, stdout, stderr)。 - shell:同上
- cwd:用于设置子进程的当前目录
- env:用于指定子进程的环境变量。如果env = None,子进程的环境变量将从父进程中继承。
- universal_newlines:不同系统的换行符不同,True -> 同意使用 \n
- startupinfo与createionflags只在windows下有效
将被传递给底层的CreateProcess()函数,用于设置子进程的一些属性,如:主窗口的外观,进程的优先级等等
终端输入的命令分为两种:
- 输入即可得到输出,如:ifconfig
- 输入进行某环境,依赖再输入,如:python
需要交互的命令示例
import subprocess obj = subprocess.Popen(["python"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
obj.stdin.write('print 1 \n ')
obj.stdin.write('print 2 \n ')
obj.stdin.write('print 3 \n ')
obj.stdin.write('print 4 \n ') out_error_list = obj.communicate(timeout=10)
print out_error_list
subprocess实现sudo 自动输入密码
import subprocess def mypass():
mypass = '' #or get the password from anywhere
return mypass echo = subprocess.Popen(['echo',mypass()],
stdout=subprocess.PIPE,
) sudo = subprocess.Popen(['sudo','-S','iptables','-L'],
stdin=echo.stdout,
stdout=subprocess.PIPE,
) end_of_pipe = sudo.stdout print "Password ok \n Iptables Chains %s" % end_of_pipe.read()
最常用的匹配语法
re.match 从头开始匹配
re.search 匹配包含
re.findall 把所有匹配到的字符放到以列表中的元素返回
re.splitall 以匹配到的字符当做列表分隔符
re.sub 匹配字符并替换
反斜杠的困扰
与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用
编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成
一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成
r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
仅需轻轻知道的几个匹配模式
re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
S(DOTALL): 点任意匹配模式,改变'.'的行为
【python之旅】python的模块的更多相关文章
- python之旅:常用模块
一.time与datetime模块 在Python中,通常有这几种方式来表示时间 时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1号00:00:00开始按照秒计算的偏移量.我们 ...
- Python之旅Day6 模块应用
time datetime random os sys shutil pickle json shelv xml configparser hashlib subprocess logging re ...
- Python之旅Day4 闭包函数 模块及模块倒入
闭包函数 闭包函数就是在内部函数当中有对外部函数名字的引用 ###代码示例1### def f1(): x =1 def f2(): print(x) return f2 f=f1() f() ### ...
- 【Python之旅】第六篇(七):开发简易主机批量管理工具
[Python之旅]第六篇(七):开发简易主机批量管理工具 python 软件开发 Paramiko模块 批量主机管理 摘要: 通过前面对Paramiko模块的学习与使用,以及Python中多线程与多 ...
- 开始 Python 之旅
开始 Python 之旅 课程来源 本课程基于 Python for you and me 教程翻译制作,其中参考了 Python tutorial 和 The Python Standard Lib ...
- Python之旅Day1 数据类型初识(数字|字符串|列表|数据运算) 编码 表达式(if...else|for|while)
初识PYTHON Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum(吉多·范罗苏姆)于 ...
- Python全栈开发【模块】
Python全栈开发[模块] 本节内容: 模块介绍 time random os sys json & picle shelve XML hashlib ConfigParser loggin ...
- Python 学习笔记(6)--常用模块(2)
一.下载安装 下载安装有两种方式: yum\pip\apt-get 或者源码 下载源码 解压源码 进入目录 编译源码 python setup.py build 安装源码 python setup.p ...
- python学习笔记之常用模块(第五天)
参考老师的博客: 金角:http://www.cnblogs.com/alex3714/articles/5161349.html 银角:http://www.cnblogs.com/wupeiqi/ ...
随机推荐
- Java 抽象类与接口总结
一.为什么要使用抽象类?有什么好处? 抽象类是通用接口.不同的子类可以用不同的方法表示此接口.通用接口建立起一种基本形式,以此表示所有子类的共同部分. 必须覆写父类abstract抽象的方法 含有抽 ...
- Linux主机安全配置的几个脚本【转载】
标签:linux Linux主机安全配置的几个脚本 职场 休闲原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://hx100.blog ...
- DS18B20测温
项目需要实现分布式大规模测温,需要52个测温点,采样DS18B20进行设计. 30cm一个点,一共8个点串联.采用国标单芯单股纯铜硬线BV0.5做导线,测试一会儿正常,一会儿不正常.后面换线了,测试正 ...
- Java高级--Java线程运行栈信息的获取 getStackTrace()
我们在Java程序中使用日志功能(JDK Log或者Log4J)的时候,会发现Log系统会自动帮我们打印出丰富的信息,格式一般如下:为了免去解析StackTrace字符串的麻烦,JDK1.4引入了一个 ...
- Java基础知识强化之集合框架笔记48:产生10个1~20之间的随机数(要求:随机数不能重复) 简洁版
1. 编写一个程序,获取10个1至20的随机数,要求随机数不能重复. 分析: A: 创建随机数对象 B: 创建一个HashSet集合 C: 判断集合的长度是不是小于10 是:就创建一个随机 ...
- ubuntu 下编译安装 mysql php nginx 及常见错误 (持续添加)
mysql mysql 可以使用mysql 官方提供的apt源进行安装 参见这里 php 安装前先安装一些常见库 sudo apt-get install libpng16-16 libpng16-d ...
- dbartisan下载地址
http://downloads.embarcadero.com/free/dbartisan
- 构建可克隆的对象(ICloneable)
ICloneable接口 如果想使自己的自定义类型支持向调用方返回自身同样副本的能力,需要实现标准ICloneable接口. namespace System { // // 摘要: // Suppo ...
- 文件图标css样式
.list-list .ico-bookfolder { background-image: url(" ...
- json 是什么
怎么学习一个知识? 首先要提出几个问题,目前认为json是个什么,json是谁创造的,为什么而出现的,但是目前仅有很长时间之前别人直接告诉我的,json用来存数据的,对于使用也忘记的差不多了,所以现在 ...