Greatest Common Increasing Subsequence

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1432

题目大意:给出两串数字,求他们的最长公共上升子序列(LCIS),并且打印出来。

Sample Input

1

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4

分析:神奇就神奇在是LIS与LCS的组合

令dp[i][j]表示A串的前i个,与B串的前j个,并以B[j]为结尾的LCIS 的长度.

状态转移方程:

  f(A[i]==B[j])   dp[i][j]=max(dp[i-1][k])+1;  ( 1 <= k < j )

  else   dp[i][j]=dp[i-1][j];

然后选择循环顺序,就可以将算法的复杂度降为n*n.

代码如下:

 /*这个代码结果虽然对,跟样例的输出都不一样,而且两个输出数据之间有空行都没有实现,却能AC,有点匪夷所思*/
# include<stdio.h>
# include<string.h>
#define MAX 550 struct node{
int x,y;
}path[MAX][MAX]; int dp[MAX][MAX];
int s[MAX],t[MAX]; int main(){
int T,i,j;
scanf("%d",&T);
while(T--)
{
memset(path,,sizeof(path));
int n,m;
scanf("%d",&n);
for(i=; i<=n; i++)
scanf("%d",&s[i]);
scanf("%d",&m);
for(i=; i<=m; i++)
scanf("%d",&t[i]);
memset(dp,,sizeof(dp));
int max = ;
for(i=; i<=n; i++)
{
max = ;
int tx = ,ty = ;
for(j=; j<=m; j++)
{
dp[i][j] = dp[i-][j];
path[i][j].x = i-;
path[i][j].y = j;
if( s[i] > t[j] && max < dp[i-][j])
{
max = dp[i-][j];
tx = i-;
ty = j;
}
if( s[i] == t[j] )
{
dp[i][j] = max+;
path[i][j].x = tx;
path[i][j].y = ty;
}
}
}
max = -;
int id;
for(i=; i<=m; i++)
if(dp[n][i]>max)
{
max = dp[n][i];
id = i;
}
int save[MAX];
int cnt=;
int tx,ty;
tx=n; ty=id;
while(dp[tx][ty] != )
{
int tmpx,tmpy;
tmpx = path[tx][ty].x;
tmpy = path[tx][ty].y;
if(dp[tx][ty] != dp[tmpx][tmpy])
{
save[cnt++]=t[ty];
}
tx = tmpx; ty = tmpy;
}
printf("%d\n",max);
for(i=cnt-; i>=; i--)
printf("%d ",save[i]);
printf("\n");
}
return ;
}

ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)的更多相关文章

  1. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  2. $ZOJ\ 2432\ Greatest\ Common\ Increasing\ Subsequence$

    传送门 $Description$ 求两个序列的最长公共上升子序列 $Solution$ $f[i][j]$表示$a$序列匹配到$i$和$b$序列匹配到$j$的最长上升序列的长度,这里并不要求$a[i ...

  3. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  4. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  5. HDU 1423 Greatest Common Increasing Subsequence(LICS入门,只要求出最长数)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  6. 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)

    \(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...

  7. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  8. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  9. HDU1423:Greatest Common Increasing Subsequence(LICS)

    Problem Description This is a problem from ZOJ 2432.To make it easyer,you just need output the lengt ...

随机推荐

  1. DATEDIFF()(转)

    SQL DATEDIFF 函数 Leave a reply SQL DATEDIFF() 函数用来返回2个时间的差.这个函数在SQL Server和MySQL中都有,但语法上有不同. SQL CASE ...

  2. linearizing the depth in vertex shader

    please refer to http://www.mvps.org/directx/articles/linear_z/linearz.htm When using a programmable ...

  3. 使用Block来进行页面间的传值

    Block语法 定义Block //定义类型 typedef void (^ReceiveMessageBlock)(NSString *); //申明变量 ReceiveMessageBlock t ...

  4. Android 自定义View可拖动移动位置及边缘拉伸放大缩小

    一.首先说一下定义这样一个View有什么用?在一些app中,需要设置头像,而用户选择的图片可能是使用摄像头拍摄,也可能是选择的相册里面的图片,总之,这样的图片大小不一,就比如在使用某个聊天软件的时候, ...

  5. Oracle中分页查询语句

    Oracle分页查询语句使我们最常用的语句之一,下面就为您介绍的Oracle分页查询语句的用法,如果您对此方面感兴趣的话,不妨一看. Oracle分页查询语句基本上可以按照本文给出的格式来进行套用.O ...

  6. 关于wordpress在修改固定链接后,总显示Not Found的问题

    参考来源: http://chinablog.blog.51cto.com/276793/280278 一.问题背景 使用wordpress搭建网站,为了让文章URL看起来漂亮一点,wordpress ...

  7. mysql日志设置

    mysql有一个功能就是可以log下来运行的比较慢的sql语句,默认是没有这个log的,为了开启这个功能,要修改my.cnf或者在mysql启动的时候加入一些参数.如果在my.cnf里面修改,需增加如 ...

  8. java-常用快捷键

    alt+/:代码提示 ctrl+/:代码提示 ctrl+1:快速生成impl代码

  9. JDK中DNS缓存的分析

    在JAVA中使用InetAddress.getByName(String host) 方法来获取给定hostname的IP地址.为了减少DNS解析的请求次数,提高解析效率,InetAddress中提供 ...

  10. Hadoop 2.6.3动态增加/删除DataNode节点

    假设集群操作系统均为:CentOS 6.7 x64 Hadoop版本为:2.6.3 一.动态增加DataNode 1.准备新的DataNode节点机器,配置SSH互信,可以直接复制已有DataNode ...