【Python排序搜索基本算法】之Dijkstra算法
Dijkstra算法和前一篇的Prim算法非常像,区别就在于Dijkstra算法向最短路径树(SPT)中添加顶点的时候,是按照ta与源点的距离顺序进行的。OSPF动态路由协议就是用的Dijkstra算法。下面还以那个图的例子为例:
代码如下:
_=float('inf') def dijkstra(graph,n):
dis=[0]*n
flag=[False]*n
pre=[0]*n
flag[0]=True
k=0
for i in range(n):
dis[i]=graph[k][i] for j in range(n-1):
mini=_
for i in range(n):
if dis[i]<mini and not flag[i]:
mini=dis[i]
k=i
if k==0:#不连通
return
flag[k]=True
for i in range(n):
if dis[i]>dis[k]+graph[k][i]:
dis[i]=dis[k]+graph[k][i]
pre[i]=k
# print(k)
return dis,pre if __name__=='__main__':
n=6
graph=[
[0,6,3,_,_,_],
[6,0,2,5,_,_],
[3,2,0,3,4,_],
[_,5,3,0,2,3],
[_,_,4,2,0,5],
[_,_,_,3,5,0],
]
dis,pre=dijkstra(graph,n)
print(dis)
print(pre)
输出如下:
[0, 5, 3, 6, 7, 9]
[0, 2, 0, 2, 2, 3]
按照输出结果用粗线表示最短路径树如下:
转载请注明:转自 http://blog.csdn.net/littlethunder/article/details/9748519
【Python排序搜索基本算法】之Dijkstra算法的更多相关文章
- Python排序搜索基本算法之归并排序实例分析
Python排序搜索基本算法之归并排序实例分析 本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序 ...
- 数据结构与算法系列研究七——图、prim算法、dijkstra算法
图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...
- 最短路径算法(Dijkstra算法、Floyd-Warshall算法)
最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确 ...
- 算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
一.名称 动态规划法应用 二.目的 1.贪婪技术的基本思想: 2.学会运用贪婪技术解决实际设计应用中碰到的问题. 三.要求 1.实现基于贪婪技术思想的Prim算法: 2.实现基于贪婪技术思想的Dijk ...
- 最短路经算法简介(Dijkstra算法,A*算法,D*算法)
据 Drew 所知最短路经算法现在重要的应用有计算机网络路由算法,机器人探路,交通路线导航,人工智能,游戏设计等等.美国火星探测器核心的寻路算法就是采用的D*(D Star)算法. 最短路经计算分静态 ...
- 最短路径算法之Dijkstra算法(java实现)
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...
- 最短路算法之Dijkstra算法通俗解释
Dijkstra算法 说明:求解从起点到任意点的最短距离,注意该算法应用于没有负边的图. 来,看图. 用邻接矩阵表示 int[][] m = { {0, 0, 0, 0, 0, 0}, {0, 0, ...
- 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现
Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...
- Prim算法、Kruskal算法、Dijkstra算法
无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal ...
随机推荐
- Linux Stu
指定命令别名 alias ..='cd ..' 命令连接符 持续的执行命令,不管错误 [命令1]; [命令2]; [命令3]; 前一个正确才执行下一个 [命令1] && [命令2] ...
- My.Ioc 代码示例——使用条件绑定和元数据(可选)构建插件树
本文旨在通过创建一棵插件树来演示条件绑定和元数据的用法. 说“插件树”也许不大妥当,因为在一般观念中,谈到插件树,我们很容易会想到 Winform/Wpf 中的菜单.举例来说,如果要在 Winform ...
- (转)PHP中extract()函数的妙用
近日在看一个牛人的代码时,看到一个非常好用的函数:extract(),它的主要作用是将数组展开,键名作为变量名,元素值为变量值,可以说为数组的操作提供了另外一个方便的工具,比方说,可以很方便的提取$_ ...
- 更新Xcode7 后 .dylib变成了.tbd的问题解决
拿添加libsqlite3.dylib为例 1.打开你添加的libsqlite3.tbd 文本文件,然后有一行 install-name: /usr/lib/libsqlite3.dylib ...
- 想加入一行代码吗?使用<code>标签
在介绍语言技术的网站中,避免不了在网页中显示一些计算机专业的编程代码,当代码为一行代码时,你就可以使用<code>标签了,如下面例子: <code>var i=i+300;&l ...
- PHP迭代器
在所有语言中,所有迭代器都必须具有如下4想功能: 1.回滚迭代器到第一个元素 2.潜行到下一个元素 3.获取当前元素 4.验证是否到最后一个元素了 在PHP中我我们可以通过实现iterator来实现迭 ...
- Linux进程或线程绑定到CPU
Linux进程或线程绑定到CPU 为了让程序拥有更好的性能,有时候需要将进程或线程绑定到特定的CPU,这样可以减少调度的开销和保护关键进程或线程. 进程绑定到CPU Linux提供一个接口,可以将进程 ...
- groovy构建和解析xml文件
原文链接:http://www.ibm.com/developerworks/cn/java/j-pg05199/ 代码示例: 构建xml文件: def static createXmlFile(){ ...
- PhotoShop 移动工具详解
自动选择工具 勾选后 可以随意移动任意图层 不勾选 只适用于移动当前所选图层 Ctrl+Z 还原移动Ctrl+Alt+Z 后退一步 复制图像 Alt键+拖动 Shift+Alt+拖动 ...
- indexof()方法
w3c手册定义和用法 indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置 stringObject.indexOf(searchvalue,fromindex) searchva ...