HDOJ 2092 整数解(2次方程整数解公式)
Problem Description
有二个整数,它们加起来等于某个整数,乘起来又等于另一个整数,它们到底是真还是假,也就是这种整数到底存不存在,实在有点吃不准,你能快速回答吗?看来只能通过编程。
例如:
x + y = 9,x * y = 15 ? 找不到这样的整数x和y
1+4=5,1*4=4,所以,加起来等于5,乘起来等于4的二个整数为1和4
7+(-8)=-1,7*(-8)=-56,所以,加起来等于-1,乘起来等于-56的二个整数为7和-8
Input
输入数据为成对出现的整数n,m(-10000 < n,m<10000),它们分别表示整数的和与积,如果两者都为0,则输入结束。
Output
只需要对于每个n和m,输出“Yes”或者“No”,明确有还是没有这种整数就行了。
Sample Input
9 15
5 4
1 -56
0 0
Sample Output
No
Yes
Yes
思路:
n是两根之和,m是两根之积,
{x + y = n,x * y = m}
=>y^2-ny+m=0;
因为y肯定是整数,所以问题简化:
判断y^2-ny+m=0是否有【整数解】即可,非整数解和无解都是No
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int n = sc.nextInt();
int m = sc.nextInt();
if(n==0&&m==0){
return ;
}
int s = n*n-4*m;
int t=(int)Math.sqrt(s);
if(t*t==s){
System.out.println("Yes");
}else{
System.out.println("No");
}
}
}
}
HDOJ 2092 整数解(2次方程整数解公式)的更多相关文章
- HDU 2092 整数解
整数解 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 2092 整数解(一元二次方程解)
题目: 思路: 1.两个整数的和和积容易联想到一元二次方程的两个根,只要证明有两个解,并都是整数就打印出Yes,否则打印出No 2.最后判断那步,为什么只需要判断一个整数存在就够了,因为和是整数,一个 ...
- HDU 2092 (将表达式变成一元二次方程形式)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2092 整数解 Time Limit: 1000/1000 MS (Java/Others) Me ...
- 杭电oj2031、2033、2070、2071、2075、2089、2090、2092、2096-2099
2031 进制转换 #include<stdio.h> #include<string.h> int main(){ int n,i,r,x,j,flag; ]; while ...
- 【HDOJ 3652】B-number
[HDOJ 3652]B-number 给一整数n 找<=n的整数中能被13整除且含有13的 数位dp 记忆化! . 一入记忆化深似海. ..再也不想用递推了...发现真的非常好想 仅仅要保证满 ...
- POJ 1061 青蛙的约会【扩展欧几里德】
设跳的次数为t 根据题意可得以下公式:(x+mt)%L=(y+nt)%L 变形得 (x+mt)-(y+nt)=kL (n-m)t+kL=x-y 令a=(n-m),b=L,c=x-y 得 at+bk=c ...
- 密码疑云 (2)——RSA加密机制需要的数学知识
在公钥密码体制提出不久,人们就找到其中的三种,其中最著名的当属RSA体制.RSA是一种非对称加密体制,在公开密钥加密和电子商业中被广泛使用.RSA是1977年由罗纳德·李维斯特(Ron Rivest) ...
- X问题 HDU - 1573(excrt入门题)
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 清明 DAY2
数论 数论是研究整数性质的东西 也就是 lim π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr b= ...
随机推荐
- Java基础知识强化之IO流笔记15:递归之删除带内容的目录案例
1. 需求:递归删除带内容的目录 分析: (1)封装目录 (2)获取该目录下的所有文件或者文件夹的File数组 (3)遍历该File数组,得到每一个File对象 (4)判断该File对 ...
- colorAccent、colorPrimary、colorPrimaryDark actionbar toolbar navigationbar
伴随着Android5.0的发布也更新了support-v7-appcompat 到V21,其中增加了ToolBar.recyclerview.cardview等控件. Android5.0对改变AP ...
- Linux基础系列—Linux体系结构和Linux内核结构
/** ****************************************************************************** * @author 暴走的小 ...
- Python自动化之5种session类型
Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie 1.数据库Session Django默认支持Se ...
- C#中接口和抽象类
1抽象类 (1) 抽象方法只作声明,而不包含实现,可以看成是没有实现体的虚方法 (2) 抽象类不能被实例化 (3) 抽象类可以但不是必须有抽象属性和抽象方法,但是一旦有了抽象方法,就一定要把这个类声明 ...
- 面试题——分析从输入url到页面返回的过程(或者查询返回过程)
1. You enter a URL into the browser(输入一个url地址) 2.The browser looks up the IP address for the domain ...
- 很棒的jQuery代码片段分享
jQuery实现的内链接平滑滚动 不需要使用太复杂的插件,只要使用下载这段代码即可实现基于内部链接的平滑滚动 $('a[href^="#"]').bind('click.smoot ...
- asp.net 读取sql存储过程返回值
关于Exec返回值的问题有很多,在这做个简要的总结. 读查询语句示例: Declare @count int select @Count 要点: ...
- web.xml配置文件中<async-supported>true</async-supported>报错的解决方案
为什么用到这个: ssh集成了cxf,当登录系统后,发现系统报错,控制台不断输出下面信息: 2016-05-05 11:05:06 - [http-bio-8080-exec-4] - WARN - ...
- 使用NPOI插件读取excel模版修改数据后保存到新目录新文件中
添加引用: using System.IO; using NPOI.XSSF.UserModel; using NPOI.SS.UserModel; using NPOI.HSSF.UserModel ...