spark streaming 2: DStream


/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous stream of data (see
* org.apache.spark.rdd.RDD in the Spark core documentation for more details on RDDs).
* DStreams can either be created from live data (such as, data from TCP sockets, Kafka, Flume,
* etc.) using a [[org.apache.spark.streaming.StreamingContext]] or it can be generated by
* transforming existing DStreams using operations such as `map`,
* `window` and `reduceByKeyAndWindow`. While a Spark Streaming program is running, each DStream
* periodically generates a RDD, either from live data or by transforming the RDD generated by a
* parent DStream.
*
* This class contains the basic operations available on all DStreams, such as `map`, `filter` and
* `window`. In addition, [[org.apache.spark.streaming.dstream.PairDStreamFunctions]] contains
* operations available only on DStreams of key-value pairs, such as `groupByKeyAndWindow` and
* `join`. These operations are automatically available on any DStream of pairs
* (e.g., DStream[(Int, Int)] through implicit conversions when
* `org.apache.spark.streaming.StreamingContext._` is imported.
*
* DStreams internally is characterized by a few basic properties:
* - A list of other DStreams that the DStream depends on
* - A time interval at which the DStream generates an RDD
* - A function that is used to generate an RDD after each time interval
*/
abstract class DStream[T: ClassTag] (
@transient private[streaming] var ssc: StreamingContext
) extends Serializable with Logging {
// =======================================================================
// Methods that should be implemented by subclasses of DStream
// =======================================================================
/** Time interval after which the DStream generates a RDD */
def slideDuration: Duration
/** List of parent DStreams on which this DStream depends on */
def dependencies: List[DStream[_]]
/** Method that generates a RDD for the given time */
def compute (validTime: Time): Option[RDD[T]]
// =======================================================================
// Methods and fields available on all DStreams
// =======================================================================
// RDDs generated, marked as private[streaming] so that testsuites can access it
@transient
private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()
/**
* Get the RDD corresponding to the given time; either retrieve it from cache
* or compute-and-cache it.
*/
private[streaming] def getOrCompute(time: Time): Option[RDD[T]] = {
spark streaming 2: DStream的更多相关文章
- 53、Spark Streaming:输入DStream之Kafka数据源实战
一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Sp ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- Spark Streaming
Spark Streaming Spark Streaming 是Spark为了用户实现流式计算的模型. 数据源包括Kafka,Flume,HDFS等. DStream 离散化流(discretize ...
- Spark学习之Spark Streaming
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它 ...
- Spark Streaming 实现思路与模块概述
一.基于 Spark 做 Spark Streaming 的思路 Spark Streaming 与 Spark Core 的关系可以用下面的经典部件图来表述: 在本节,我们先探讨一下基于 Spark ...
- .Spark Streaming(上)--实时流计算Spark Streaming原理介
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...
- spark streaming的理解和应用
1.Spark Streaming简介 官方网站解释:http://spark.apache.org/docs/latest/streaming-programming-guide.html 该博客转 ...
- 实时流计算Spark Streaming原理介绍
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包 ...
- Spark Streaming之一:整体介绍
提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可 ...
随机推荐
- RSA 加密长度计算公式
The length of data that can be encrypted using RSA is determined primarily by the size of the key yo ...
- Scala新版本学习(2):
1.本章要点; (1)if表达式有值: (2)块也有值,是它最后一个表达式的值 (3)Scala的for循环就像是"增强版的"Java for循环 (4)分号不是必须的 (5)vo ...
- 03 Linux下运行Django项目
1.安装windows和linux传输文件的工具 pip install lrzsz 提供两个命令 一个是上传一个是下载 rz 接收 直接rz sz 上传 直接sz 或者直接拖拽 2.在线下载资源的命 ...
- 怎么定义vue-router的动态路由?怎么获取传过来的动态参数?
在router目录下的index.js文件中,对path属性加上/:id. 使用router对象的params.id 例如 : this.$route.params.id
- 关于swiper 4的coverflowEffect(3d)
轮播效果: HTML: <div class="swiper-container successful_swiper"> <div class="swi ...
- Nginx请求限制配置
Nginx请求限制配置 请求限制可以通过两种方式来配置,分别是 连接频率限制和请求频率限制 首先我们要知道什么是http请求和连接,浏览器和服务端首先通过三次握手完成连接,然后发起请求,传输请求参数 ...
- Darknet版YOLO安装与配置
Darknet配置和安装 1. 安装显卡驱动 首先查看一下自己的电脑需要怎样的驱动,我们可以先到 http://www.nvidia.com/Download/index.aspx 查询下我们需要的是 ...
- c++ easyX的学习
画象棋盘来浅显学习了解easyx 了解象棋盘的构成: 如图就为一个基本的象棋棋盘我们下面就用esayx来画出这个棋盘,我的感觉这个棋盘大概分为两个部分:第一部分就是棋盘的大致布局,第二个就是棋盘的细节 ...
- 如何自己搭建DNS服务器
DNS服务器是计算机域名系统 (Domain Name System 或Domain Name Service) 的缩写,它是由 解析器和域名服务器组成的.域名服务器是指保存有该网络中所有主机的域名和 ...
- 有关List、Set、Map的基础了解
刚申请了一个博客,怀着一颗激动的心情我竟不知道写点啥,嗯~来点基础的吧!面试的时候一直被问到的集合框架. 集合,也称为容器,可以将一系列元素组合成一个单元,用于存储.提取. ...