Codechef TRIPS Children Trips (分块、倍增)
题目链接: https://www.codechef.com/problems/TRIPS
感觉CC有点毒瘤啊。。
题解: 首先有一个性质可能是因为太傻所以网上没人解释,然而我看了半天: 就是正序和倒序经过同一段路径,用时一样。
我原来想了个很麻烦的证法,ckw: "显然把一个序列划分成数量尽可能少的子串,每一段和不超过\(P\), 那么从左往右和从右往左都是最优解,所以他俩相等啊"
发现了这个性质以及其一些简单的推论,后面的就比较简单了
分块讨论
对于\(p>\sqrt n\)的询问,暴力倍增跳即可,最多跳\(\sqrt n\)次。
对于\(p\le \sqrt n\)的询问,按\(p\)从小到大排序,只有\(O(\sqrt n)\)个不同的\(p\), 对于每一个预处理数组\(f[i][j]\)表示\(i\)点往上跳\(2^j\)天(不是步)跳到哪里,询问暴力跳即可
时间复杂度\(O(n\sqrt n\log n)\)
然后尽管复杂度这么大,在CC上测出来时间是\(3.42s\) (时限\(8s\)).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1e5;
const int MXB = 317;
const int LGN = 16;
struct Edge
{
int v,w,nxt;
} e[(N<<1)+3];
struct Query
{
int u,v,p,id;
bool operator <(const Query &arg) const
{
return p<arg.p;
}
} qr[N+3];
int fe[N+3];
int fa[N+3][LGN+3];
int dep[N+3],dis[N+3];
int f[N+3][LGN+3];
int ans[N+3];
int n,q,en,B;
void addedge(int u,int v,int w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en;
}
void dfs(int u)
{\
for(int i=1; i<=LGN; i++) fa[u][i] = fa[fa[u][i-1]][i-1];
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(v==fa[u][0]) continue;
fa[v][0] = u;
dep[v] = dep[u]+1; dis[v] = dis[u]+e[i].w;
dfs(v);
}
}
int LCA(int u,int v)
{
if(dep[u]<dep[v]) {swap(u,v);}
int dif = dep[u]-dep[v];
for(int i=0; i<=LGN; i++) {if(dif&(1<<i)) u = fa[u][i];}
if(u==v) return u;
for(int i=LGN; i>=0; i--)
{
if(fa[u][i]!=fa[v][i]) {u = fa[u][i],v = fa[v][i];}
}
return fa[u][0];
}
int jump0(int u,int p)
{
int tdis = dis[u];
for(int i=LGN; i>=0; i--)
{
if(fa[u][i]!=0 && tdis-dis[fa[u][i]]<=p) {u = fa[u][i];}
}
return u;
}
int jump_large(int &u,int lca,int p)
{
int ret = 0;
while(dis[u]-dis[lca]>=p)
{
u = jump0(u,p);
ret++;
}
return ret;
}
int solve_large(int u,int v,int p)
{
int ret = 0; int lca = LCA(u,v);
int ret1 = jump_large(u,lca,p),ret2 = jump_large(v,lca,p);
ret = ret1+ret2;
// printf("u=%d v=%d\n",u,v);
if(u==lca && v==lca);
else if(dis[u]+dis[v]-2*dis[lca]<=p) ret++;
else ret+=2;
return ret;
}
int jump_small(int &u,int lca,int p)
{
int ret = 0;
for(int i=LGN; i>=0; i--)
{
if(dis[f[u][i]]>dis[lca]) {u = f[u][i]; ret += (1<<i);} //> not >=
}
return ret;
}
int solve_small(int u,int v,int p)
{
int ret = 0; int lca = LCA(u,v);
int ret1 = jump_small(u,lca,p),ret2 = jump_small(v,lca,p);
ret = ret1+ret2;
// printf("u=%d v=%d lca%d ret1=%d ret2=%d\n",u,v,lca,ret1,ret2);
if(u==lca && v==lca);
else if(dis[u]+dis[v]-2*dis[lca]<=p) ret++;
else ret+=2;
return ret;
}
int main()
{
scanf("%d",&n); B = sqrt(n);
for(int i=1; i<n; i++)
{
int x,y,z; scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z); addedge(y,x,z);
}
dep[1] = dis[1] = 1; dfs(1);
scanf("%d",&q);
for(int i=1; i<=q; i++)
{
int u,v,p; scanf("%d%d%d",&qr[i].u,&qr[i].v,&qr[i].p); qr[i].id = i;
}
sort(qr+1,qr+q+1);
for(int i=1; i<=n; i++) f[i][0] = fa[i][0];
int id = 0;
for(int i=2; i<=B; i++)
{
for(int j=2; j<=n; j++)
{
if(dis[j]-dis[fa[f[j][0]][0]]<=i) {f[j][0] = fa[f[j][0]][0];}
}
for(int j=1; j<=LGN; j++)
{
for(int k=1; k<=n; k++) f[k][j] = f[f[k][j-1]][j-1];
}
while(id<q && qr[id+1].p==i)
{
id++;
ans[qr[id].id] = solve_small(qr[id].u,qr[id].v,qr[id].p);
}
}
for(id=id+1; id<=q; id++)
{
ans[qr[id].id] = solve_large(qr[id].u,qr[id].v,qr[id].p);
}
for(int i=1; i<=q; i++) printf("%d\n",ans[i]);
return 0;
}
Codechef TRIPS Children Trips (分块、倍增)的更多相关文章
- 【CODECHEF】Children Trips 倍增
此题绝了,$O(n^{1.5}\ log\ n)$都可以过掉.... 题目大意:给你一颗$n$个点的树,每条边边权不是2就是$1$,有$m$个询问,每次询问一个人从$x$点走到$y$点,每天可以走的里 ...
- 【codechef】Children Trips
Portal -->CC_Children Trips Solution (英文题解看得真爽qwq不过写的好详细啊ovo) 首先这题有一个很重要的条件就是边权是\(1\)或者\(2\),所以虽然 ...
- [CC-TRIPS]Children Trips
[CC-TRIPS]Children Trips 题目大意: \(n(n\le10^5)\)座城市构成一棵树,且树上的每条边的长度\(l_i\)满足\(1\le l_i\le 2\).\(m(m\le ...
- CODECHEF Oct. Challenge 2014 Children Trips
@(XSY)[分塊, 倍增] Description There's a new trend among Bytelandian schools. The "Byteland Tourist ...
- 题解 Children Trips
题目传送门 Description 给出一个大小为 \(n\) 的边权全为 \(1,2\) 的带权树,有 \(q\) 此查询,每次给出 \(u,v,p\) ,问 \(u\to v\) 每次可以最多走边 ...
- HDU - 6394 Tree(树分块+倍增)
http://acm.hdu.edu.cn/showproblem.php?pid=6394 题意 给出一棵树,然后每个节点有一个权值,代表这个点可以往上面跳多远,问最少需要多少次可以跳出这颗树 分析 ...
- hdu 6394 Tree (2018 Multi-University Training Contest 7 1009) (树分块+倍增)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=6394 思路:用dfs序处理下树,在用分块,我们只需要维护当前这个点要跳出这个块需要的步数和他跳出这个块去 ...
- CodeChef Chef and Churu [分块]
题意: 单点修改$a$ 询问$a$的区间和$f$的区间和 原来普通计算机是这道题改编的吧... 对$f$分块,预处理$c[i][j]$为块i中$a_j$出现几次,$O(NH(N))$,只要每个块差分加 ...
- (转载)构建public APIs与CORS
from: https://segmentfault.com/a/1190000000709909 理由:在操作层面详细的讲解了跨域的操作.尤其是对于option请求的详解.收藏. 在构建Public ...
随机推荐
- JDBC的一些简单通用代码
JDBC的一些简单通用代码 功能包括 连接数据库 查询操作 执行sql语句 jdbc相关类的加载 关闭连接 获取数据库格式的当前时间 代码 package dao; import java.sql.C ...
- noip2018day1-赛道修建
题目描述 \(C\) 城将要举办一系列的赛车比赛.在比赛前,需要在城内修建 $m $条赛道. \(C\) 城一共有 \(n\) 个路口,这些路口编号为 \(1,2,-,n\)有 $n-1 $条适合于修 ...
- 问题:C++类的静态成员变量如何初始化
C++类的静态成员变量属于该类,在该类所有的对象间共享. 要弄清如何初始化,首先要明白声明.定义.初始化三个概念的不同. 声明:指定变量的名字和类型,可以多次声明. 定义:为该成员变量分配存储空间,有 ...
- 均值滤波器(平滑空间滤波器)基本原理及Python实现
1. 基本原理 使用元素的领域内像素的平均值代替该元素,可明显的降低图像灰度的尖锐变换.它的一种重要应用是模糊处理:得到感兴趣的区域的粗略表示,将次要的/小的元素与背景融合,使得主要的/较大的元素变得 ...
- 曹工说Spring Boot源码(5)-- 怎么从properties文件读取bean
写在前面的话 相关背景及资源: 曹工说Spring Boot源码(1)-- Bean Definition到底是什么,附spring思维导图分享 曹工说Spring Boot源码(2)-- Bean ...
- ES6 环境的搭建
安装babel npm install --g babel-cli 在项目目录下输入 npm init -y 会自动创建package.json文件 babel src/index.js -o dis ...
- 7.利用canvas和js画一个渐变的
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- mydql 设置充许远程链接
1 本机作为服务器时,其他机器连接不上? 1)看一下防火墙是否打开了. 2)在cmd中设置权限. 第一种:(进入数据库的情况下) 1.d:\mysql\bin\>mysql -h localho ...
- nova计算服务分布式
控制节点 #第一步 控制节点下载nova-conpute包 #安装依赖包 #vim /etc/nova/nova.conf [DEFAULT] my_ip=#当前节点IP use_neutron = ...
- Android 静态代码分析工具
简评: 作者在文中提到的三个静态代码分析工具不是互相替代的关系,各有各的侧重点,如果有需要完全可以同时使用. 静态代码分析是指无需运行被测代码,仅通过分析或检查源程序的语法.结构.过程.接口等来检查程 ...