题意 : 有一个n个数的数列且元素都是0~n-1,问你将数列的其中某一个数及其前面的数全部置到后面这种操作中(比如3 2 1 0中选择第二个数倒置就产生1 0 3 2)能产生的最少的逆序数对是多少?

分析 : 首先铁定排除枚举法,直接暴力肯定是超时的。既然这样不妨来找找规律,从第一个数开始,如果我们将第一个数放到末尾,根据逆序数的特点,能够推断出当前总逆序数应该是减少了arr[i]并增加了(n-1)-arr[i] (这里arr[i]代表这个数后面有多少个数小于它),如果细心一点,可以发现不管是从第几个数开始,都是由我们刚刚所说的将第一个数放到末尾构造而来,比如 1 2 3 4 我们将第二个数开始放到末尾就是 3 4 1 2,同样是可以这样构造而来,就是先将第一个数放到末尾产生一个序列 2 3 4 1,然后又进行一次将第一个数放到末尾产生3 4 1 2,这样根据我们之前得到的结论,只要知道当前序列的逆序数对和arr[i],我们就能递推出下一个序列的逆序数对。那么现在关键就是arr[i]怎么快速求?还记得序列是个0~n-1的序列嘛,实际上arr[i]就等于当前在头部的这个数的值,比如 2 1 3 0 在头部的是2,那么后面就有2个比它小的数!所以最终要得到答案我们只要一开始算出原始序列的逆序数对就能够O(n)的枚举了!

#include<bits/stdc++.h>
#define lowbit(i) (i&(-i))
using namespace std;
;
int c[maxn];
int top, n;
void add(int i, int val)
{
    while(i <= n){
        c[i] += val;
        i += lowbit(i);
    }
}
int sum(int i)
{
    ;
    ){
        ret += c[i];
        i -= lowbit(i);
    }
    return ret;
}
int arr[maxn];
int main(void)
{
    while(~scanf("%d", &n)){
        top = n;
        memset(c, , sizeof(c));
        memset(arr, 0x3f, sizeof(arr));
        ;
        ; i<n; i++){
            int tmp;
            scanf("%d", &arr[i]);
            arr[i]+=;//树状数组小心0的陷阱!
            SUM += i - sum(arr[i]);//累计求出初始序列的逆序数对
            add(arr[i], );
        }
        int ans = SUM;
        ; i<n; i++){
            ans = min(SUM, ans);
            SUM += n - arr[i] - (arr[i] - );//递推构造
        }
        printf("%d\n", ans);
    }
    ;
}

瞎 : 面对这种操作很明显有规律的,就要赶快先实验前几次操作,找找规律,再想想能不能递推,题目给出的序列的任何一个性质都是有用的,比如这里的0~n-1,以后遇到类似的题就把能得到的性质全部列出来,把每一步操作能得到的结果和特点综合分析,不能瞎想.....

HDU 1394 Minimum Inversion Number (树状数组 && 规律 && 逆序数)的更多相关文章

  1. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  2. HDU 1394 Minimum Inversion Number (树状数组求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题目让你求一个数组,这个数组可以不断把最前面的元素移到最后,让你求其中某个数组中的逆序对最小是多 ...

  3. hdu 1394 Minimum Inversion Number - 树状数组

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...

  4. [hdu1394]Minimum Inversion Number(树状数组)

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

    HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意:  给一个序列由 ...

  6. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  7. hdu 5147 Sequence II (树状数组 求逆序数)

    题目链接 Sequence II Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. poj 2299 Ultra-QuickSort(树状数组求逆序数)

    链接:http://poj.org/problem?id=2299 题意:给出n个数,求将这n个数从小到大排序,求使用快排的需要交换的次数. 分析:由快排的性质很容易发现,只需要求每个数的逆序数累加起 ...

  9. SGU180 Inversions(树状数组求逆序数)

    题目: 思路:先离散化数据然后树状数组搞一下求逆序数. 离散化的方法:https://blog.csdn.net/gokou_ruri/article/details/7723378 自己对用树状数组 ...

随机推荐

  1. Dubbo基础、高级讲解

    基础 https://blog.csdn.net/hardworking0323/article/category/6148466 高级 https://blog.csdn.net/hardworki ...

  2. 重装java后hadoop配置文件的修改

    1.删除hdfs-site.xml中dfs.namenode.name.dir目录和dfs.datanode.data.dir目录 然后 hdfs namenode -format 不然将无法启动na ...

  3. Ubantu问题记录

    2019.4.21Ubantu问题:常用命令:sudo是一种权限管理机制,依赖于/etc/sudoers,定义了授权给哪个用户可以以管理员的身份执行管理命令格式:sudo -u USERNAME CO ...

  4. 3种Redis分布式锁的对比

    我们通常使用的synchronized或者Lock都是线程锁,对同一个JVM进程内的多个线程有效.因为锁的本质 是内存中存放一个标记,记录获取锁的线程是谁,这个标记对每个线程都可见.然而我们启动的多个 ...

  5. 求x到y的最少计算次数 (BFS)

    时间限制:1秒 空间限制:262144K 给定两个-100到100的整数x和y,对x只能进行加1,减1,乘2操作,问最少对x进行几次操作能得到y? 例如:a=3,b=11: 可以通过3*2*2-1,3 ...

  6. 32、出任爬虫公司CEO(爬取职友网招聘信息)

    职友集,搜索到全国上百家招聘网站的最新职位.   https://www.jobui.com/rank/company/   打开网址后,你会发现:这是职友集网站的地区企业排行榜,里面含有     本 ...

  7. SQL注入的一些技巧分享

    先上一道简单的ctf注入题: 一道利用order by进行注入的ctf题 很不错的一道利用order by的注入题,之前不知道order by除了爆字段还有这种操作. 原题地址:http://chal ...

  8. 需求文档(PRD文档)

    https://blog.csdn.net/zhangbijun1230/article/details/79451874

  9. hackthebox通关手记(持续更新)

    简介: 花了点时间弄了几道题目.以前我是用windows渗透居多,在kali linux下渗透测试一直不怎么习惯.通过这几天做这些题目感觉顺手多了.有些题目脑洞也比较大,感觉很多也不适合于实际的环境 ...

  10. RabbitMQ延迟队列插件安装

    RabbitMQ延迟队列插件安装 一.下载插件 下载地址:https://www.rabbitmq.com/community-plugins.html 二.把下载的插件放到指定位置 下载的文件为zi ...