Problem of State-Value Function

Similar as Policy Iteration in Model-Based Learning, Generalized Policy Iteration will be used in Monte Carlo Control. In Policy Iteration, we keep doing Policy Evaluation and Policy Improvement untill our policy converging to Optimal Policy.

Every time when we improve the policy, the action that gives the best return(reward+value function of the next state) will be picked.

The problem of this algorithm if we directly transfering to Monte Carlo is: it is based on the Transition Matrix.

Monte Carlo Control based on Q function

The idea of Policy Iteration can be used to Estimite Action-Value Function, and it is very useful for Model-Free problem. The process of choosing actions does not depend on State-Value function, because the return from a specific action is given by Monte Carlo estimation.

Q function can be updated by:

When we improve the policy, we just pick the action that produce the maximum Q value.

Exploration-exploitation Dilemma and ε-Greedy Exploration:

In Model-Based Policy Iteration algorithm, we update all State-Value function within a single policy evaluation process, so that we can choose the best actions from the whole action space  whiled improving policies. Nevertheless, Monte Carlo Learning only updates the Action-Value functions whose actions were taken on the previous episode. So there are probabily some actions having better returns than the actions we have tried. Sometimes we need to give them a trial. We call that problem the Exploration-Exploitation Delemma.

It is necessary to try some new opened restaurant, rather than going to the usual place every day.

ε-Greedy Exploration is the algorithm that gives the agent probability=ε to choose randomly actions and 1-ε to stay on the optimal action.

Monte Carlo Control的更多相关文章

  1. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

  2. Monte Carlo Policy Evaluation

    Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinfor ...

  3. Monte Carlo方法简介(转载)

    Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...

  4. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  5. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  6. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  7. [其他] 蒙特卡洛(Monte Carlo)模拟手把手教基于EXCEL与Crystal Ball的蒙特卡洛成本模拟过程实例:

    http://www.cqt8.com/soft/html/723.html下载,官网下载 (转帖)1.定义: 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数 ...

  8. Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)

    Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)  部分翻译自“Monte Carlo Tree Search and Its Applicati ...

  9. (转)Monte Carlo method 蒙特卡洛方法

    转载自:维基百科  蒙特卡洛方法 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%9 ...

随机推荐

  1. tp5 微信授权

    protected $appid = '****************'; //微信 appidprotected $appsecrt = '******************'; //微信 ap ...

  2. ocvate常用函数

    1.生成矩阵相关 https://www.coursera.org/learn/machine-learning/lecture/9fHfl/basic-operations 1. 初始化矩阵 a = ...

  3. Linux 安装FTP服务

    Linux 安装FTP服务,简单入门 环境: 虚拟机:Oracle VM VirtualBox. 系统:CentOS 7. (1)判断是否安装了ftp: rpm -qa | grep vsftpd 或 ...

  4. 一个简单mock-server 解决方案

    參考: 测试利器之Mock server 介紹 moco server - download Mockman - download 各种Mock工具比较 JMockit中文网 MockWebServe ...

  5. VS2015开发常用快捷键

    以下内容均Ctrl+后面的按钮 M-O\P折叠 K-F 格式化 K-U\C注释 K-S侧外代码-(区域代码) 代码片段 ctor 自动生成默认的构造函数 prop 自动生成get set方法 cw 自 ...

  6. 【leetcode】1146. Snapshot Array

    题目如下: Implement a SnapshotArray that supports the following interface: SnapshotArray(int length) ini ...

  7. HTML5基础内容(二)

    HTML(HyperText Markup Language)超文本标记语言 一.HTML注释 元素就是标签,标签就是元素. 注释中的内容不会在页面中显示,但是可以在源码中看到. 可以通过编写注释来对 ...

  8. 用 IDEA工具导入SVN项目。 步骤一:选择VCS

    Intellij IDEA是目前主流的IDE开发工具,工程项目导入也是必不可少的操作,本文讲述如何用 IDEA工具导入SVN项目. 步骤一:选择VCS 步骤二:打开SVN Repositories 在 ...

  9. winXP 系统下ubuntu-12.04 硬盘安装

    目地:实现XP ubuntu双系统,引导可选择. 出处:根查阅网络资料和自己的安装体检,记录如是. 系统版本:windowsXP  SP3   Ubuntu 12.04 工具资源:grup4dos 2 ...

  10. Han Xin and His Troops

    Han Xin and His Troops 中国剩余定理 JAVA板子 /*中国剩余定理,根据公式需要求取大数的逆元*/ import java.math.BigInteger; import ja ...