HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 44371 Accepted Submission(s): 16084
Problem Description
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But
I`m lazy, I don't want to write a special-judge module, so you don't
have to output m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Process to the end of file.
Output
Sample Input
- - -
Sample Output
题目大意
从一序列中取出若干段,这些段之间不能交叉,使得和最大并输出。、
题目分析
动态规划 首先我们可以列出最基本的状态转移方程:
dp[i][j] = max( dp[i][j-1] + a[j] , dp[i-1][k] + a[j ]) i-1<=k<=j-1
这个方程的含义是:
dp[i][j] 是将前 j 个数分成 i 份,且第 i 份包含第 j 个数 的情况下的最大值
那么对于第 j 个数来说,就有两个选择:
作为第 i 份的一部分 :也就是将前 j-1 个数分成 i 份 且第 j-1 个数属于第 i 份 即 dp[i][j-1]
或者单独出来成为第 i 份:也就是将前 j-1 个数分成 i-1 份 且第 j-1 个数不一定属于第 i-1 份 即 dp[i-1][k] i-1<=k<=j-1
但是这个方程不仅时间复杂度高,空间复杂度也高的可怕 这是不行的
所以我们要将其优化:
首先我们发现 dp[i][j] 只需要比较 dp[i][j-1] 与 dp[i-1][k] 的最大值即可 而这个 dp[i-1][k] 的最大值是可以记录下来的 不需要遍历 这就砍去了一层循环
所以我们只需要定义一个 pre[n] 数组 用 pre[j] 来存储第 j-1 个数被分成 i-1 份时的最大值即可
于此同时 在计算 dp[i][j] 时,我们可以计算出 dp[i][k] i<=k<=j 的值 而这个值是在之后我们要计算 dp[i+1][j+1] 时 要使用的 pre[j]
现在状态转移方程变成了:
dp[i][j] = max( dp[i][j-1] + a[j] , pre[j-1] + a[j ])
现在我们发现 由于pre[j] 的存在 似乎已经不需要 dp[i][j] 这个庞大的二维数组了 只需要开一个 dp[n] 的数组 用dp[j]来存储dp[i][j]即可,因为当前的转移方程根本就没有用到 i 这一维!
这样的话 转移方程又变成了:
dp[j] = max( dp[j-1] + a[j] , pre[j-1] + a[j ])
不过 i 的这一层循环还是得循环的 这个砍不掉的...
#include<bits/stdc++.h> using namespace std; int n,m,dp[],a[],pre[],i,j,temp; int main()
{
while(scanf("%d %d",&m,&n)!=EOF)
{
memset(dp,,sizeof(dp));
memset(a,,sizeof(a));
memset(pre,,sizeof(pre));
for(i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(i=;i<=m;i++)
{
temp=-0x7ffffff;
for(j=i;j<=n;j++)
{
dp[j]=max(dp[j-],pre[j-])+a[j];
pre[j-]=temp;
temp=max(temp,dp[j]);
}
}
cout<<temp<<endl;
}
}
HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)的更多相关文章
- HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...
- HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]
Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...
- hdu 1024 Max Sum Plus Plus (动态规划)
Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
- HDU - 1024 Max Sum Plus Plus 最大m段子段和+滚动数组优化
给定n个数字,求其中m段的最大值(段与段之间不用连续,但是一段中要连续) 例如:2 5 1 -2 2 3 -1五个数字中选2个,选择1和2 3这两段. dp[i][j]从前j个数字中选择i段,然后根据 ...
- HDU 1024 Max Sum Plus Plus (动态规划)
HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1024 max sum plus
A - Max Sum Plus Plus Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I6 ...
随机推荐
- ng-reapte指令遍历
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta cha ...
- IE8 浏览器文本模式变为杂项(quirks)页面变形的解决方法
IE8 浏览器文本模式(document.documentMode)变为杂项(quirks)页面变形的解决方法. 正常情况下 document.documentMode 输出为8,而变为杂项之后doc ...
- 手动升级 Confluence - 规划你的升级
1. 确定你的升级路径 使用下面的表格来确定最佳的升级路径来让你的Confluence 从当前版本升级到最新的 Confluence 版本. 你的版本 推荐升级到 Confluence 的升级路径 2 ...
- JavaWeb_客户端相对/绝对路径和服务器端路径
客户端的绝对路径和相对路径 相对路径:相对与某个基准目录的路径,在同一根目录下各子目录文件之间的相互引用, 绝对路径:指目录下的绝对位置,直接到的目标位置 @charset "UTF-8&q ...
- RESTful API Design
https://restful-api-design.readthedocs.org/en/latest/scope.html http://blog.mashape.com/30-ways-to-m ...
- C++入门经典-例5.10-指针作为返回值
1:代码如下: // 5.10.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usin ...
- _parameter:解决There is no getter for property named in class java.lang.String
我们知道在mybatis的映射中传参数,只能传入一个.通过#{参数名} 即可获取传入的值. Mapper接口文件: public int delete(int id) throws Exception ...
- 使用 sed 命令查找和替换文件中的字符串的 16 个示例
当你在使用文本文件时,很可能需要查找和替换文件中的字符串.sed 命令主要用于替换一个文件中的文本.在 Linux 中这可以通过使用 sed 命令和 awk 命令来完成. 在本教程中,我们将告诉你使用 ...
- Use an Excel RTD Server with DCOM
费好大劲找到的文章,留存. Use an Excel RTD Server with DCOM 如何使用DCOM的Excel RTD服务器 Microsoft Office Excel 2007,Mi ...
- Javadoc常见的标记和含义
1.@param 方法参数的说明 2.@return 对 方法返回值的说明 3.@throws 方法抛出异常的描述 4.@version模块的版本号 5.see参数转向 6.@deprecated标记 ...