前言

暴力跑的比正解快。

以下暴力(循环展开+fread读入输出优化)

#include<cstdio>
#pragma GCC optimize(3, "Ofast") int a[200010]; namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
inline int read(){
int x = 0; char ch = ' ';
while (ch < '0' || ch > '9') ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
}
inline void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + 48);
}
} using namespace fast_IO; #define max(a,b) (a>(b)?a:(b)) int main(){
const int n = read(); int q = read();
for (register int i = 1; i <= n; ++i)
a[i] = read();
while (q--){
const int x = read(), l = read(), rr = read();
register int ans = 0;
const int lft = ((rr - l) >> 2 << 2) + l;
for (register int j = l; j <= lft - 4; j += 4){
(ans < (x ^ a[j + 1])) && (ans = x ^ a[j + 1]);
(ans < (x ^ a[j + 2])) && (ans = x ^ a[j + 2]);
(ans < (x ^ a[j + 3])) && (ans = x ^ a[j + 3]);
(ans < (x ^ a[j + 4])) && (ans = x ^ a[j + 4]);
}
for (register int j = lft; j <= rr; ++j)
ans = max(ans, x ^ a[j + 1]);
write(ans), putchar_('\n');
}
flush(); return 0;
}

题目

给定一个长度为 \(n(1 \leq n \leq 2 \times 10^5)\) 的数列,

给定 \(q(1 \leq q \leq 2 \times 10^5)\) 个询问,

每个询问给定三个整数 \(x, l, r\) 。

在区间 \([l,r]\) 中选定一个数,使它与 \(x\) 的异或值最大。

查询

题解

如果是查询区间是一个固定区间,很容易想到,使用trie树。

那么如果查询不是固定区间,那么显然珂以使用可持久化trie树切掉此题,

预计时间复杂度\(\Theta(n\ logn)\)

但是博主才学疏浅,不会这个算法。

就这么结束了吗?

并没有,显然我们可以用类线段树结构维护trie树,复杂度\(\Theta(n\ log^2n)\)

考场上常数过大 一不小心 TLE了

后来一边query一边建树,就AC了。

代码

#pragma GCC optimize(3, "Ofast")
#include <cstdio> namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
int read(){
int x = 0; char ch = ' ';
while (ch < '0' || ch > '9') ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x;
}
void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + '0');
}
} using namespace fast_IO; struct Trie{
int c[2];
} trie[57108864];
int cnt = 0; void insert(int x, int rt){
for (register int i = 1 << 29; i; i >>= 1){
bool to = x & i;
if (trie[rt].c[to] == -1){
trie[rt].c[to] = ++cnt;
trie[cnt].c[0] = trie[cnt].c[1] = -1;
}
rt = trie[rt].c[to];
}
} int query(int x, int rt){
int res = 0;
for (register int i = 1 << 29; i; i >>= 1){
bool to = (x ^ i) & i;
if (~trie[rt].c[to]){
res += i;
rt = trie[rt].c[to];
}
else rt = trie[rt].c[to ^ 1];
}
return res;
} int a[200005]; struct Seg{
int root;
int lc, rc;
} seg[800005]; inline int max(int a, int b){
return ((a > b) ? a : b);
} int querySeg(int pos, int l, int r, int x, int y, int v){
if (x <= l && r <= y){
if (!seg[pos].root){
seg[pos].root = ++cnt;
trie[cnt].c[0] = trie[cnt].c[1] = -1;
for (register int i = l; i <= r; ++i)
insert(a[i], seg[pos].root);
}
return query(v, seg[pos].root);
}
int mid = l + r >> 1, res = 0;
if (x <= mid)
res = querySeg(pos << 1, l, mid, x, y, v);
if (y > mid)
res = max(res, querySeg(pos << 1 | 1, mid + 1, r, x, y, v));
return res;
} int main(){
int n = read(), q = read();
trie[0].c[0] = trie[0].c[1] = -1;
for (register int i = 1; i <= n; ++i)
a[i] = read();
while (q--){
int x = read(), l = read() + 1, r = read() + 1;
write(querySeg(1, 1, n, l, r, x)), putchar_('\n');
}
flush(); return 0;
}

[HG]腿部挂件 题解的更多相关文章

  1. [HG]子树问题 题解

    前言 模拟赛赛时SubtaskR3没开long long丢了20分. 题意简述 题目描述 对于一棵有根树(设其节点数为 \(n\) ,则节点编号从 \(1\) 至 \(n\) ),如果它满足所有非根节 ...

  2. [HG]走夜路 题解

    前言 整个机房就我一个人在想动态规划. 想了半天发现一堆性质,结果由于DP中出现折线挂了. 题目描述 某NOIP普及组原题加强版. \(Jim\) 非常怕黑,他有一个手电筒,设手电筒的电量上限为 \( ...

  3. [HG]提高组 题解

    首先很容易想到暴力DP 设状态f[i][j]表示当前放了第i个数,最大的数为j的方案数. 然后根据转移推出实际上是在下图走路的方案数 \[ \left( \left( \begin{matrix} x ...

  4. HGOI 20191030am 题解

    Problem A 腿部挂件 给出$n$个数的序列$a_i$,支持$T$次操作. 每次操作形如$x , l , r$,计算$\max_{i = l}^{r} (a_i \oplus x)$的值. 对于 ...

  5. Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂

    更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...

  6. [HG]Market 题解

    题目描述 在比特镇一共有 \(n\) 家商店,编号依次为 \(1\) 到 \(n\). 每家商店只会卖一种物品,其中第 \(i\) 家商店的物品单价为 \(c_i\),价值为 \(v_i\),且该商店 ...

  7. [HG]小G坐电梯 题解

    C 小G坐电梯 题目描述 小G来到了著名的某大厦.大厦一共有n层,初始的时候小G在第 A 层. 小G特别想去B层小 M 的办公室看一看,然而因为安保原因,B层已经被封锁无法进入. 但是小G既然来了,就 ...

  8. [HG]walk 题解

    前言 学长博客划水,抄题解,差评. 于是我来重新写一篇正常的题解,虽然解法跟标程不一样,但是复杂度是一样的. 题面 题目描述 在比特镇一共有\(n\)个街区,编号依次为\(1\)到\(n\),它们之间 ...

  9. [HG]钻石游戏diamond 题解

    题面 钻石游戏(diamond) 问题描述: 一个\(M\)行\(N\)列的棋盘,里面放了\(M \times N\)个各种颜色的钻石. 每一次你可以选择任意两个相邻的颜色不同的钻石,进行交换.两个格 ...

随机推荐

  1. 【Python】【基础知识】【内置函数】【help的使用方法】

    原英文帮助文档: help([object]) Invoke the built-in help system. (This function is intended for interactive ...

  2. 安装破解MyEclipse2017CI

    一.下载 1.Myeclipse官网下载地址:http://www.myeclipsecn.com/download/ 2.破解补丁链接:https://pan.baidu.com/s/1Ge_fbm ...

  3. Ubuntu - Ubuntu应用记录(1)

    1.发生dpkg status database is locked by another process 原因是包管理器没有正确关闭.需要重启计算机或者重新打开终端 输入: sudo rm /var ...

  4. 深入理解分布式系统的2PC和3PC

    协调者 在分布式系统中,每一个机器节点虽然都能明确的知道自己执行的事务是成功还是失败,但是却无法知道其他分布式节点的事务执行情况.因此,当一个事务要跨越多个分布式节点的时候(比如,淘宝下单流程,下单系 ...

  5. Eclipse 新建.jsp页面后,页面头部标签报错的解决方法

    Eclipse 新建.jsp页面后,页面头部标签报错的解决方法 1.报错地方: 2.解决方法: .jsp页面右键==>BUild Path ==>Configure Build Path. ...

  6. C语言实现远程代码注入

    #include <windows.h> #include <iostream> #define STRLEN 20 typedef struct _DATA { DWORD ...

  7. 多列表zip合并的csv持久化储存

    有时xpath爬取数据之后会返回多个列表,这些列表的长度一样,这时候可以用zip()合并,然后返回一个zip对象,直接传入储存函数,进行持久化储存 例如: name=['张三','李四','王五'] ...

  8. 多线程编程-- part 6 共享锁和ReentrantReadWriteLock

    介绍: ReadWriteLock,顾名思义,是读写锁.它维护了一对相关的锁 — — “读取锁”和“写入锁”,一个用于读取操作,另一个用于写入操作.(1)“读取锁”用于只读操作,它是“共享锁”,能同时 ...

  9. 线程安全的Singleton要点

    1.privat static Singleton 要加votatile关键字修饰,防止对象的初始化代码与引用赋值代码进行重排序. 2.getInstance方法,最外层要加if (instance ...

  10. Delphi ComboBox组件