杜教筛&min_25筛复习
杜教筛
适用条件
你要能构造出\(g(x),h(x)\),使得\(h=f*g\)。
\(G(x),H(x)\)的值可以快速计算。
过程
我们要求的是\(F(n)=\sum_{i=1}^{n}f(i)\),现在有\(h=f*g\),\(G(x),H(x)\)分别为\(g(x),h(x)\)的前缀和。
\[
\begin{aligned}
H(n)=&\sum_{i=1}^{n}h(i)\\
=&\sum_{i=1}^{n}\sum_{d|i}f(\frac{i}{d})g(d)\\
=&\sum_{d=1}^{n}g(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}f(i)\\
=&\sum_{d=1}^{n}g(d)F(\lfloor \frac{n}{d} \rfloor)\\
g(1)F(n)=H(n)-&\sum_{d=2}^{n}g(d)F(\lfloor \frac{n}{d} \rfloor)
\end{aligned}
\]
通过线性筛预处理出前\(n^{\frac{2}{3}}\)的前缀和,加上记忆化,可以做到\(O(n^{\frac{2}{3}})\)的时间复杂度。
min_25筛
适用条件
\(f(P)\)的值是一个关于\(P\)的多项式。
\(f(P^Q)\)的值可以快速计算。
当然,\(f(x)\)必须是一个积性函数。
原理
先咕了,咕咕咕。
第一次处理
假设\(f'(x)=x^k\),令\(g[P_i][x]\)表示所有\(f'(y)\)的和,其中\(1 \leq y \leq x\),\(y\)是质数或者\(y\)的最小质因子大于\(P_i\),有这样的递推式:
\[g[P_i][x]=g[P_{i-1}][x]-f'(P_i)(g[P_{i-1}][\lfloor\frac{x}{P_i}\rfloor]-\sum_{j=1}^{i-1}f'(P_j)),\ x \geq P_i^2\]
\[g[P_i][x]=g[P_{i-1}][x],\ x < P_i^2\]
\(g[P_i][x]\)的第一维可以使用滚动数组优化掉,时间复杂度为\(O(\frac{n^{\frac{3}{4}}}{\log n})\)。
第二次处理
为了方便,这里使用\(g[x]\)表示\(g[P_{cnt}][x]\)(\(cnt\)表示质数个数)。
令\(S(x,P_i)\)表示所有\(f(y)\)的和,其中\(1 \leq y \leq x\),\(y\)的最小质因子大于等于\(P_i\),有:
\[S(x,P_i)=g[x]-\sum_{j=1}^{i-1}f(P_j)+\sum_{j=i}^{P_j^2 \leq x}\sum_{k=1}^{P_j^{k+1} \leq x}f(P_j^k)S(\lfloor\frac{x}{p_j^k}\rfloor,P_{j+1})+f(P_j^{k+1})\]
这里无需记忆化,直接递归计算即可,时间复杂度为\(O(\frac{n^{\frac{3}{4}}}{\log n})\)。
杜教筛&min_25筛复习的更多相关文章
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- 洲阁筛 & min_25筛学习笔记
洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)
link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...
- min_25筛入门
目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[L ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...
- LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]
传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...
随机推荐
- java中this总结(转载请注明出处)
1:this在构造方法中:this可以进行构造方法中的相互调用,this(参数): 2:this调用方法中,代表调用该方法的对象的地址,例如下面的代码比较 package thisTest; publ ...
- 三剑客-sed(简写)
打印操作:n命令所有行打印,第二行打印两遍 sed '2p' passwd只打印第二行sed -n '2p' passwd打印1~3行 sed -n '1,3p' passwd 打印带有'root'的 ...
- centos配置postfix邮件服务
1.环境初始化 [root@mail ~]# rpm -q centos-release //查看系统版本 centos-release-7-5.1804.el7.centos.x86_64 [roo ...
- 第一篇 HTML 认识HTML
认识HTML 学习一门语言,我们要先了解它,可以不用太资深,但要做到别人问,你能回答得出来! 注:推荐大家去网址:www.w3school.com.cn 前端学习手册(免费的) HTML(超文本标记语 ...
- 免费FQ工具
这里使用免费的`梯子` 下载赛风 选择Windows下载 下载好之后,直接点击打开,它会自动连接,什么也不要设置,下载的就是一个exe文件,连接成功会打开一个网页,不用管
- Linux6上安装MySQL
MySQL安装包下载:https://www.mysql.com/downloads/ 然后选择: 把下载好的安装包传到服务器上的指定目录,然后解压: [root@master mysql]# tar ...
- Shell脚本之sed详解
在编写shell脚本的过程中,我们经常需要使用sed流编辑器和awk对文本文件进行处理. 一.什么是sed? sed 是一种在线编辑器,它一次处理一行内容.sed是非交互式的编辑器.它不会修改文件,除 ...
- Tomcat各版本及源码包下载
Tomcat各版本及源码包下载 1.百度 Tomcat 进入官网2.Tomcat 官网地址:http://tomcat.apache.org/3.所有 Tomcat 版本及源码包下载地址:https: ...
- RHEL6中LVM逻辑卷管理
1.LVM 基本术语 物理卷(physical volume):物理卷在逻辑卷管理中处于最底层,它可以是实际物理硬盘上的分区,也可以是整个物理硬盘. 卷组(Volume Group):卷组建立 ...
- html 不刷新切换当前页面内容
一个小功能,做个笔记: 操作流程是:导航产品有三个下拉子菜单,点击食品跳转,同时跳转出来的子页面中,选中食品这个当前项. 切换 食品 厨具 家电 三个选项卡在刷新页面的时候仍然停留在当前选中 ...