LDA(Latent Dirichlet Allocation)主题模型算法
LDA整体流程
先定义一些字母的含义:
- 文档集合D,topic集合T
- D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词。(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响)
- D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC)
LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词):
- 对每个D中的文档d,对应到不同topic的概率θd <
pt1,..., ptk >,其中,pti表示d对应T中第i个topic的概率。计算方法是直观的,pti=nti/n,其中nti表示d中对应第i个topic的词的数目,n是d中所有词的总数。 - 对每个T中的topic t,生成不同单词的概率φt <
pw1,..., pwm >,其中,pwi表示t生成VOC中第i个单词的概率。计算方法同样很直观,pwi=Nwi/N,其中Nwi表示对应到topic
t的VOC中第i个单词的数目,N表示所有对应到topic t的单词总数。
LDA的核心公式如下:
p(w|d) = p(w|t)*p(t|d)
直观的看这个公式,就是以Topic作为中间层,可以通过当前的θd和φt给出了文档d中出现单词w的概率。其中p(t|d)利用θd计算得到,p(w|t)利用φt计算得到。
实际上,利用当前的θd和φt,我们可以为一个文档中的一个单词计算它对应任意一个Topic时的p(w|d),然后根据这些结果来更新这个词应该对应的topic。然后,如果这个更新改变了这个单词所对应的Topic,就会反过来影响θd和φt。
LDA学习过程
LDA算法开始时,先随机地给θd和φt赋值(对所有的d和t)。然后上述过程不断重复,最终收敛到的结果就是LDA的输出。再详细说一下这个迭代的学习过程:
1)针对一个特定的文档ds中的第i单词wi,如果令该单词对应的topic为tj,可以把上述公式改写为:
pj(wi|ds)
= p(wi|tj)*p(tj|ds)
先不管这个值怎么计算(可以先理解成直接从θds和φtj中取对应的项。实际没这么简单,但对理解整个LDA流程没什么影响,后文再说)。
2)现在我们可以枚举T中的topic,得到所有的pj(wi|ds),其中j取值1~k。然后可以根据这些概率值结果为ds中的第i个单词wi选择一个topic。最简单的想法是取令pj(wi|ds)最大的tj(注意,这个式子里只有j是变量),即
argmax[j]pj(wi|ds)
当然这只是一种方法(好像还不怎么常用),实际上这里怎么选择t在学术界有很多方法,我还没有好好去研究。
3)然后,如果ds中的第i个单词wi在这里选择了一个与原先不同的topic,就会对θd和φt有影响了(根据前面提到过的这两个向量的计算公式可以很容易知道)。它们的影响又会反过来影响对上面提到的p(w|d)的计算。对D中所有的d中的所有w进行一次p(w|d)的计算并重新选择topic看作一次迭代。这样进行n次循环迭代之后,就会收敛到LDA所需要的结果了。
LDA(Latent Dirichlet Allocation)主题模型算法的更多相关文章
- LDA(Latent Dirichlet allocation)主题模型
LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系.一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 它是一种主题模型,它可以将文档 ...
- JGibbLDA:java版本的LDA(Latent Dirichlet Allocation)实现、修改及使用
转载自:http://blog.csdn.net/memray/article/details/16810763 一.概述 JGibbLDA是一个java版本的LDA(Latent Dirichl ...
- LDA(latent dirichlet allocation)
1.LDA介绍 LDA假设生成一份文档的步骤如下: 模型表示: 单词w:词典的长度为v,则单词为长度为v的,只有一个分量是1,其他分量为0的向量 $(0,0,...,0,1,0,... ...
- Latent Dirichlet Allocation 文本分类主题模型
文本提取特征常用的模型有:1.Bag-of-words:最原始的特征集,一个单词/分词就是一个特征.往往一个数据集就会有上万个特征:有一些简单的指标可以帮助筛选掉一些对分类没帮助的词语,例如去停词,计 ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
- LDA( Latent Dirichlet Allocation)主题模型 学习报告
1 问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...
- 转:关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码
关于Latent Dirichlet Allocation及Hierarchical LDA模型的必读文章和相关代码 转: http://andyliuxs.iteye.com/blog/105174 ...
- Spark:聚类算法之LDA主题模型算法
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...
- Spark机器学习(8):LDA主题模型算法
1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇 ...
随机推荐
- Delphi Edit组件
- CDH中Oozie无法卸载
问题:HUE依赖Oozie 所以Oozie不能够卸载,好坑啊 解决思路: 重新装回来,但是不启动Oozie,节约一部分性能.
- 如何使用sqlalchemy根据数据库里面的表反推出模型,然后进行查询
关于sqlalchemy映射数据库里面的表,一般情况下我们是需要定义一个模型来映射数据库里面的表的.但是很多时候数据库里面的表都是定义好的,而且字段很多,那么有没有不定义模型,还能使用orm语法查找数 ...
- Fiddler实现iPhone手机抓包
最近某小程序大火,许多非专业人员也在跃跃欲试,但是在查找自己的session_id的时候卡住了,本文只从技术方面介绍如何通过通过Fiddler来抓取手机的数据,不涉及如何作弊... 1.电脑上安装Fi ...
- Linux编译阻塞型驱动遇到'TASK_NORMAL' undeclared (first use in this function)问题解决办法
http://blog.csdn.net/qq_16405157/article/details/49281793
- MMU功能解析、深入剖析、配置与使用
MMU = memory management unit 1.把虚拟地址转化成物理地址,防止地址冲突 2.访问权限管理 MMU把一个虚拟地址的20位到31位作为取出来,建立 一张表,叫做transla ...
- Hive Serde(四)
Hive Serde 目的: Hive Serde用来做序列化和反序列化,构建在数据存储和执行引擎之间,对两者实现解耦. 应用场景: 1.hive主要用来存储结构化数据,如果结构化数据存储的格 ...
- Mongodb索引和执行计划 hint 慢查询
查询索引 索引存放在system.indexes集合中 > show tables address data person system.indexes 默认会为所有的ID建上索引 而且无法删除 ...
- XXL-JOB原理--任务调度中心任务管理
XXL-JOB原理--任务调度中心任务管理 https://blog.csdn.net/qq924862077/article/details/82713758
- SQL Server自动备份
1.打开SQL Server Management Studio 数据库-管理-维护计划,右键,维护计划向导 2.在弹出页面右下方点击[更改],修改计划执行方案 根据需要,修改执行时间 3.修改完毕后 ...