神经风格转换 (Neural-Style-Transfer-Papers)
原文:https://github.com/ycjing/Neural-Style-Transfer-Papers
Neural-Style-Transfer-Papers
Selected papers, corresponding codes and pre-trained models in our review paper "Neural Style Transfer: A Review"
Citation
If you find this repository useful for your research, please cite
@article{jing2017neural,
title={Neural Style Transfer: A Review},
author={Jing, Yongcheng and Yang, Yezhou and Feng, Zunlei and Ye, Jingwen and Song, Mingli},
journal={arXiv preprint arXiv:1705.04058},
year={2017}
}
Pre-trained Models in Our Paper
✅[Coming Soon]
A Taxonomy of Current Methods
1. Descriptive Neural Methods Based On Image Iteration
1.1. MMD-based Descriptive Neural Methods
✅ [A Neural Algorithm of Artistic Style] [Paper] (First Neural Style Transfer Paper)
❇️ Code:
✅ [Image Style Transfer Using Convolutional Neural Networks] [Paper] (CVPR 2016)
✅ [Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses] [Paper] (CVPR 2017)
✅ [Demystifying Neural Style Transfer] [Paper] (Theoretical Explanation) (IJCAI 2017)
❇️ Code:
✅ [Content-Aware Neural Style Transfer] [Paper]
✅ [Towards Deep Style Transfer: A Content-Aware Perspective] [Paper] (BMVC 2016)
1.2. MRF-based Descriptive Neural Methods
✅ [Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis] [Paper] (CVPR 2016)
❇️ Code:
✅ [Neural Doodle_Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
2. Generative Neural Methods Based On Model Iteration
✅ [Perceptual Losses for Real-Time Style Transfer and Super-Resolution] [Paper] (ECCV 2016)
❇️ Code:
❇️ Pre-trained Models:
✅ [Texture Networks: Feed-forward Synthesis of Textures and Stylized Images] [Paper] (ICML 2016)
❇️ Code:
✅ [Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis] [Paper] (CVPR 2017)
❇️ Code:
✅ [Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks] [Paper] (ECCV 2016)
❇️ Code:
✅ [A Learned Representation for Artistic Style] [Paper] (ICLR 2017)
❇️ Code:
✅ [Fast Patch-based Style Transfer of Arbitrary Style] [Paper]
❇️ Code:
Slight Modifications of Current Methods
1. Modifications of Descriptive Neural Methods
✅ [Exploring the Neural Algorithm of Artistic Style] [Paper]
✅ [Improving the Neural Algorithm of Artistic Style] [Paper]
✅ [Preserving Color in Neural Artistic Style Transfer] [Paper]
✅ [Controlling Perceptual Factors in Neural Style Transfer] [Paper]
❇️ Code:
2. Modifications of Generative Neural Methods
✅ [Instance Normalization:The Missing Ingredient for Fast Stylization] [Paper]
❇️ Code:
✅ [Depth-Preserving Style Transfer] [Paper]
❇️ Code:
Extensions to Specific Types of Images
✅ [Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]
❇️ Code:
✅ [Painting Style Transfer for Head Portraits Using Convolutional Neural Networks] [Paper] (SIGGRAPH 2016)
✅ [Son of Zorn's Lemma Targeted Style Transfer Using Instance-aware Semantic Segmentation] [Paper]
✅ [Artistic Style Transfer for Videos] [Paper] (GCPR 2016)
❇️ Code:
✅ [DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies] [Paper]
Application
✅ Prisma
✅ Ostagram
❇️ Code:
Application Papers
✅ [Bringing Impressionism to Life with Neural Style Transfer in Come Swim] [Paper]
✅ [Imaging Novecento. A Mobile App for Automatic Recognition of Artworks and Transfer of Artistic Styles] [Paper]
Blogs
✅ https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/
✅ https://research.googleblog.com/2016/10/supercharging-style-transfer.html
Exciting New Directions
✅ Character Style Transfer
[Awesome Typography: Statistics-based Text Effects Transfer][Paper]
[Rewrite: Neural Style Transfer For Chinese Fonts][Project]
神经风格转换 (Neural-Style-Transfer-Papers)的更多相关文章
- 神经风格转换Neural Style Transfer a review
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...
- 项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)
1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(ge ...
- fast neural style transfer图像风格迁移基于tensorflow实现
引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...
- DeepLearning.ai-Week4-Deep Learning & Art: Neural Style Transfer
1 - Task Implement the neural style transfer algorithm Generate novel artistic images using your alg ...
- DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...
- Art: Neural Style Transfer
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 1.Practice quentions
[解释] This allows us to learn to predict a person’s identity using a softmax output unit, where the n ...
随机推荐
- (转)WebRTC信令控制与STUN/TURN服务器搭建
转:https://rtcdeveloper.com/t/topic/13742 本文将向大家介绍两个方面的知识: WebRTC信令控制 STUN/TURN服务器的搭建 在前面的文章中已经向大家介绍了 ...
- SQL Server database mail问题诊断一例
产品环境sql server database的mail发不出邮件,影响客户的业务,在数据库中进行诊断 诊断sql: EXEC msdb.dbo.sp_send_dbmail @profile_nam ...
- nginx location的优先级
原来一直以为location的优先级是先后顺序,结果有次项目中傻眼了,赶紧百度一下,下面的内容参考了这个链接 location表达式类型 ~ 表示执行一个正则匹配,区分大小写~* 表示执行一个正则匹配 ...
- ORACLE 错误案例—ORA-27102: out of memory
SQL> startupORA-27102: out of memoryLinux-x86_64 Error: 28: No space left on deviceAdditional inf ...
- 将html转化为canvas图片(清晰度高)的方法
var copyDom = document.querySelector('.fenxiang1'); var width = copyDom.offsetWidth;//dom宽 var heigh ...
- 使用JS区分客户端
之前遇到,上司这样一个指示. 他说:“你看,能不能帮我解决一下,ipad自带的,键盘问题.” 就是我们做的这个项目,是一个 web项目,然后 要求 电脑端 和 平板都可以访问.在日期输入框的地方.他们 ...
- 操作系统安全 - 提权 - Windows提权 - 汇总
CVE_2019-1388 Date: -- 影响范围: SERVER ====== Windows 2008r2 ** link OPENED AS SYSTEM ** Windows 2012r2 ...
- 不容错过的 MySQL史上最全
点击下方链接 http://c.biancheng.net/view/2361.html
- 1000行基本SQL
/* Windows服务 */ -- 启动MySQL net start mysql -- 创建Windows服务 sc create mysql binPath= mysqld_bin_path(注 ...
- kmeans 聚类 k 值优化
kmeans 中k值一直是个令人头疼的问题,这里提出几种优化策略. 手肘法 核心思想 1. 肉眼评价聚类好坏是看每类样本是否紧凑,称之为聚合程度: 2. 类别数越大,样本划分越精细,聚合程度越高,当类 ...