原文:https://github.com/ycjing/Neural-Style-Transfer-Papers

Neural-Style-Transfer-Papers

Selected papers, corresponding codes and pre-trained models in our review paper "Neural Style Transfer: A Review"

Citation

If you find this repository useful for your research, please cite

@article{jing2017neural,
title={Neural Style Transfer: A Review},
author={Jing, Yongcheng and Yang, Yezhou and Feng, Zunlei and Ye, Jingwen and Song, Mingli},
journal={arXiv preprint arXiv:1705.04058},
year={2017}
}

Pre-trained Models in Our Paper

✅[Coming Soon]

A Taxonomy of Current Methods

1. Descriptive Neural Methods Based On Image Iteration

1.1. MMD-based Descriptive Neural Methods

✅ [A Neural Algorithm of Artistic Style] [Paper] (First Neural Style Transfer Paper)

❇️ Code:

✅ [Image Style Transfer Using Convolutional Neural Networks] [Paper] (CVPR 2016)

✅ [Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses] [Paper] (CVPR 2017)

✅ [Demystifying Neural Style Transfer] [Paper] (Theoretical Explanation) (IJCAI 2017)

❇️ Code:

✅ [Content-Aware Neural Style Transfer] [Paper]

✅ [Towards Deep Style Transfer: A Content-Aware Perspective] [Paper] (BMVC 2016)

1.2. MRF-based Descriptive Neural Methods

✅ [Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis] [Paper] (CVPR 2016)

❇️ Code:

✅ [Neural Doodle_Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]

2. Generative Neural Methods Based On Model Iteration

✅ [Perceptual Losses for Real-Time Style Transfer and Super-Resolution] [Paper] (ECCV 2016)

❇️ Code:

❇️ Pre-trained Models:

✅ [Texture Networks: Feed-forward Synthesis of Textures and Stylized Images] [Paper] (ICML 2016)

❇️ Code:

✅ [Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis] [Paper] (CVPR 2017)

❇️ Code:

✅ [Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks] [Paper] (ECCV 2016)

❇️ Code:

✅ [A Learned Representation for Artistic Style] [Paper] (ICLR 2017)

❇️ Code:

✅ [Fast Patch-based Style Transfer of Arbitrary Style] [Paper]

❇️ Code:

Slight Modifications of Current Methods

1. Modifications of Descriptive Neural Methods

✅ [Exploring the Neural Algorithm of Artistic Style] [Paper]

✅ [Improving the Neural Algorithm of Artistic Style] [Paper]

✅ [Preserving Color in Neural Artistic Style Transfer] [Paper]

✅ [Controlling Perceptual Factors in Neural Style Transfer] [Paper]

❇️ Code:

2. Modifications of Generative Neural Methods

✅ [Instance Normalization:The Missing Ingredient for Fast Stylization] [Paper]

❇️ Code:

✅ [Depth-Preserving Style Transfer] [Paper]

❇️ Code:

Extensions to Specific Types of Images

✅ [Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork] [Paper]

❇️ Code:

✅ [Painting Style Transfer for Head Portraits Using Convolutional Neural Networks] [Paper] (SIGGRAPH 2016)

✅ [Son of Zorn's Lemma Targeted Style Transfer Using Instance-aware Semantic Segmentation] [Paper]

✅ [Artistic Style Transfer for Videos] [Paper] (GCPR 2016)

❇️ Code:

✅ [DeepMovie: Using Optical Flow and Deep Neural Networks to Stylize Movies] [Paper]

Application

✅ Prisma

✅ Ostagram

❇️ Code:

✅ Deep Forger

Application Papers

✅ [Bringing Impressionism to Life with Neural Style Transfer in Come Swim] [Paper]

✅ [Imaging Novecento. A Mobile App for Automatic Recognition of Artworks and Transfer of Artistic Styles] [Paper]

Blogs

✅ https://code.facebook.com/posts/196146247499076/delivering-real-time-ai-in-the-palm-of-your-hand/

✅ https://research.googleblog.com/2016/10/supercharging-style-transfer.html

Exciting New Directions

✅ Character Style Transfer

  • [Awesome Typography: Statistics-based Text Effects Transfer][Paper]

  • [Rewrite: Neural Style Transfer For Chinese Fonts][Project]

神经风格转换 (Neural-Style-Transfer-Papers)的更多相关文章

  1. 神经风格转换Neural Style Transfer a review

    原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...

  2. 项目总结四:神经风格迁移项目(Art generation with Neural Style Transfer)

    1.项目介绍 神经风格转换 (NST) 是深部学习中最有趣的技术之一.它合并两个图像, 即 内容图像 C(content image) 和 样式图像S(style image), 以生成图像 G(ge ...

  3. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  4. 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer

    Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...

  5. [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer

    第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...

  6. DeepLearning.ai-Week4-Deep Learning & Art: Neural Style Transfer

    1 - Task Implement the neural style transfer algorithm Generate novel artistic images using your alg ...

  7. DeepLearning.ai学习笔记(四)卷积神经网络 -- week4 特殊应用:人力脸识别和神经风格转换

    一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们 ...

  8. Art: Neural Style Transfer

    Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...

  9. 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 1.Practice quentions

    [解释] This allows us to learn to predict a person’s identity using a softmax output unit, where the n ...

随机推荐

  1. Python 写 ACM 题目的一些技巧

    目录 输入输出 input() 输入 split() 用于输入 strip() 输入清理 print() 输入 sort 排序 输入输出 input() 输入 Python3 中 input() 函数 ...

  2. webpack配置之webpack.config.js文件配置

    webpack配置之webpack.config.js文件配置 webpack.config.js webpack resolve  1.总是手动的输入webpack的输入输出文件路径,是一件非常繁琐 ...

  3. iOS堆栈内存区别

    堆和栈的区别: · 1> 堆空间的内存是动态分配的,一般存放对象,并且需要手动释放内存. · 2> 栈空间的内存由系统自动分配,一般存放局部变量等,不需要手动管理内存. 接下来我将从以下几 ...

  4. springboot打war包部署tomcat服务器,以及表单提交数据乱码处理

    小白觉得springboot打成jar包直接使用内嵌的tomcat或jetty容器(java -jar xxx.jar)运行项目不利于定位问题,我还是习惯于查看tomcat或nginx的日志来定位问题 ...

  5. lgb参数及调参

    1 参数含义 max_depth: 设置树的最大深度,默认为-1,即不限制最大深度,它用于限制过拟合 num_leave: 单颗树的叶子数目,默认为31 eval_metric: 评价指标,可以用lg ...

  6. css让字体细长

    transform: scale(1,3); -ms-transform: scale(1,3); -webkit-transform: scale(1,3); -moz-transform: sca ...

  7. 用configmap管理配置

    一.ConfigMap介绍管理配置: ConfigMap介绍 Secret 可以为 Pod 提供密码.Token.私钥等敏感数据:对于一些非敏感数据,比如应用的配置信息,则可以用 ConfigMap ...

  8. oracle-控制文件的备份和恢复

    本篇将介绍各种备份及恢复控制文件的方法,在介绍恢复时,以备份和重做日志(包括归档日志和在线日志)没有丢失为前提. 无备份情况下的控制文件恢复参考13.3,丢失重做日志的情况请参考12篇“不完全数据库恢 ...

  9. 机器学习【一】K最近邻算法

    K最近邻算法 KNN 基本原理 离哪个类近,就属于该类   [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...

  10. Java多线程学习——图片下载

    实现多线程方式1:继承类Thread——重写方法run——调用方法start 从网络下载图片首先要增加包commons-io.jar import org.apache.commons.io.File ...