[Bzoj3262]陌上花开(CDQ分治&&树状数组||树套树)
题目就是赤裸裸的三维偏序,所以用CDQ+树状数组可以比较轻松的解决,但是还是树套树好想QAQ
CDQ+树状数组
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll maxn = + ;
struct node {
int a, b, c, num, val;
}q[maxn], w[maxn];
bool cmp(node x, node y) {
return x.a == y.a ? (x.b == y.b ? x.c < y.c : x.b < y.b) : x.a < y.a;
}
int sum[maxn], ans[maxn];
int n, k;
int lowbit(int x) {
return x & -x;
}
void add(int x, int val) {
while (x <= k) {
sum[x] += val;
x += lowbit(x);
}
}
int query(int x) {
int ans = ;
while (x > ) {
ans += sum[x];
x -= lowbit(x);
}
return ans;
}
void CDQ(int l, int r) {
if (l == r)return;
int mid = l + r >> ;
CDQ(l, mid); CDQ(mid + , r);
int L = l, R = mid + , cnt = l;
while (L <= mid && R <= r) {
if (w[L].b <= w[R].b)add(w[L].c, w[L].num), q[cnt++] = w[L++];
else w[R].val += query(w[R].c), q[cnt++] = w[R++];
}
while (L <= mid)add(w[L].c, w[L].num), q[cnt++] = w[L++];
while (R <= r)w[R].val += query(w[R].c), q[cnt++] = w[R++];
for (int i = l; i <= mid; i++)add(w[i].c, -w[i].num);
for (int i = l; i <= r; i++)w[i] = q[i];
}
int main() {
scanf("%d%d", &n, &k);
for (int i = ; i <= n; i++)
scanf("%d%d%d", &q[i].a, &q[i].b, &q[i].c), q[i].num = ;
sort(q + , q + + n, cmp);
int cnt = ;
w[] = q[];
for (int i = ; i <= n; i++) {
if (q[i].a == w[cnt].a&&q[i].b == w[cnt].b&&q[i].c == w[cnt].c)w[cnt].num++;
else w[++cnt] = q[i];
}
CDQ(, cnt);
for (int i = ; i <= cnt; i++)
ans[w[i].val + w[i].num - ] += w[i].num;
for (int i = ; i < n; i++)
printf("%d\n", ans[i]);
}
树套树(树状数组套线段树)
因为空间有限,线段树要动态开点且要写成链表QAQ。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll maxn = + ;
struct node {
int a, b, c, num, val;
}q[maxn], w[maxn];
bool cmp(node x, node y) {
return x.a == y.a ? (x.b == y.b ? x.c < y.c : x.b < y.b) : x.a < y.a;
}
int n, k;
int ans[maxn];
struct seg {
struct node {
int val;
node *ls, *rs;
node() { val = ; ls = rs = NULL; }
};
node *root;
seg() {
root = NULL;
}
void update(node *&x, int pos, int val, int l, int r) {
if (!x)x = new node();
if (l == r) {
x->val += val;
return;
}
int mid = l + r >> ;
if (pos <= mid)update(x->ls, pos, val, l, mid);
else update(x->rs, pos, val, mid + , r);
x->val = (x->ls ? x->ls->val : ) + (x->rs ? x->rs->val : );
}
int query(node *x, int L, int R, int l, int r) {
if (!x)return ;
if (L <= l && r <= R)
return x->val;
int mid = l + r >> , ans = ;
if (L <= mid)ans += query(x->ls, L, R, l, mid);
if (R > mid)ans += query(x->rs, L, R, mid + , r);
return ans;
}
}T[maxn];
int lowbit(int x) {
return x & -x;
}
void add(int x, int q, int val) {
while (x <= k) {
T[x].update(T[x].root, q, val, , k);
x += lowbit(x);
}
}
int query(int x, int q) {
int ans = ;
while (x > ) {
ans += T[x].query(T[x].root, , q, , k);
x -= lowbit(x);
}
return ans;
}
int main() {
scanf("%d%d", &n, &k);
for (int i = ; i <= n; i++)
scanf("%d%d%d", &q[i].a, &q[i].b, &q[i].c), q[i].num = ;
sort(q + , q + + n, cmp);
int cnt = ;
w[] = q[];
for (int i = ; i <= n; i++) {
if (q[i].a == w[cnt].a&&q[i].b == w[cnt].b&&q[i].c == w[cnt].c)w[cnt].num++;
else w[++cnt] = q[i];
}
for (int i = ; i <= cnt; i++) {
add(w[i].b, w[i].c, w[i].num);
int p = query(w[i].b, w[i].c);
ans[p] += w[i].num;
}
for (int i = ; i <= n; i++)
printf("%d\n", ans[i]);
}
[Bzoj3262]陌上花开(CDQ分治&&树状数组||树套树)的更多相关文章
- HDU 5618 Jam's problem again(三维偏序,CDQ分治,树状数组,线段树)
Jam's problem again Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- POJ 1195 Mobile phones (二维树状数组或线段树)
偶然发现这题还没A掉............速速解决了............. 树状数组和线段树比较下,线段树是在是太冗余了,以后能用树状数组还是尽量用......... #include < ...
- 树状数组-HDU1541-Stars一维树状数组 POJ1195-Mobile phones-二维树状数组
树状数组,学长很早之前讲过,最近才重视起来,enmmmm... 树状数组(Binary Indexed Tree(B.I.T), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据 ...
- 【BZOJ3196】二逼平衡树(树状数组,线段树)
[BZOJ3196]二逼平衡树(树状数组,线段树) 题面 BZOJ题面 题解 如果不存在区间修改操作: 搞一个权值线段树 区间第K大--->直接在线段树上二分 某个数第几大--->查询一下 ...
- HDU 5877 2016大连网络赛 Weak Pair(树状数组,线段树,动态开点,启发式合并,可持久化线段树)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Tota ...
- Codeforces 777E(离散化+dp+树状数组或线段树维护最大值)
E. Hanoi Factory time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- st表、树状数组与线段树 笔记与思路整理
已更新(2/3):st表.树状数组 st表.树状数组与线段树是三种比较高级的数据结构,大多数操作时间复杂度为O(log n),用来处理一些RMQ问题或类似的数列区间处理问题. 一.ST表(Sparse ...
- Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树
C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...
- HYSBZ - 3813 奇数国 欧拉函数+树状数组(线段树)
HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所 ...
- bzoj3262: 陌上花开(cdq分治+树状数组)
3262: 陌上花开 题目:传送门 题解: %%%cdq分治 很强大的一个暴力...感觉比分块高级多了 这道题目就是一个十分经典的三维偏序的例题: 一维直接暴力排序x 二维用csq维护y 三维用树状数 ...
随机推荐
- day3 ord,chr,random,string
day3复习 >>> for i in range(10): ... if i == 3: ... break ... print(i) ... 0 1 2 >>> ...
- 岭回归、lasso
参考:https://blog.csdn.net/Byron309/article/details/77716127 ---- https://blog.csdn.net/xbinwor ...
- SQL 查询表字段长度, 名称, 类型, 存储过程创建和修改时间
获取存储过程的修改时间和创建时间查询建立时间 --表 select * from sysobjects where id=object_id(N'表名') and xtype='U' --表的结构 s ...
- 走进JavaWeb技术世界7:Tomcat和其他WEB容器的区别
本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...
- java1.8 10大新特性
http://blog.csdn.net/u013598111/article/details/49720867 一.接口的默认方法 Java 8允许我们给接口添加一个非抽象的方法实现,只需要使用 d ...
- SQL优化—nested loop优化
跑批时间段22:00-23:00,生成AWR报告 分析sql:SQL_ID='5hfw4smzs2pqw' 执行计划: SQL> select * FROM TABLE(DBMS_XPLAN. ...
- 通过HookNtCreateSection 动态监控驱动sys、动态链接库dll、可执行文件exe加载
[cpp] view plaincopyprint? /* windows2003 x86/x64 window7 x86 windows2008 R2 x64测试通过 */ #include < ...
- 自定义控件 - 字母索引 : LetterIndexView
实现字母列表,滑动列表显示当前选中字母,回调接口. 1.实现字母列表.初始化相关属性.计算每个字母所占宽高.绘制字母A-Z,#. private int itemWidth;//每个字母所占宽度 pr ...
- Vue实现音乐播放器(二)-Vue-cli脚手架安装
- day41—JavaScript运动的停止条件
转行学开发,代码100天——2018-04-26 前面学过了JavaScript运动的两种常用情形:匀速运动与缓冲运动.在这两种运动的处理过程中最大的区别在于速度的处理和到达目标点的处理. 即本文需要 ...