python 并发编程 多进程 模拟抢票
抢票是并发执行
多个进程可以访问同一个文件
多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务
db.txt
{"count": 1}
并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人
#文件db.txt的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别 from multiprocessing import Process
import time
import json class Foo(object): def search(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"])) def get(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟 with open("db.txt", "w") as f_write:
json.dump(dic, f_write) print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"]) else:
print("没票了,抢光了") def task(self, name):
self.search(name)
self.get(name) if __name__ == "__main__": obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i,))
p.start()
总结:程序出现数据写入错乱
大家都查到票为1,都购票成功
<路人1>用户 查看剩余票数为 [1]
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人1> 购票成功
剩余票数为 [0]
<路人2> 购票成功
剩余票数为 [0]
<路人3> 购票成功
剩余票数为 [0]
<路人4> 购票成功
剩余票数为 [0]
<路人5> 购票成功
剩余票数为 [0]
<路人6> 购票成功
剩余票数为 [0]
<路人7> 购票成功
剩余票数为 [0]
<路人8> 购票成功
剩余票数为 [0]
<路人9> 购票成功
剩余票数为 [0]
<路人10> 购票成功
剩余票数为 [0] 总结程序出现数据写入错乱
加锁处理:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全
购票功能不应该并发执行,查票应该是并发执行的
查票准不准确不重要,有可能这张票就被别人买走
一个人写完以后,让另外一个人基于上一个人写的结果,再做购票操作
#把文件db.txt的内容重置为:{"count":1}
from multiprocessing import Process
from multiprocessing import Lock
import time
import json class Foo(object): def search(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"])) def get(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟 with open("db.txt", "w") as f_write:
json.dump(dic, f_write) print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"]) else:
print("没票了,抢光了") def task(self, name, mutex):
self.search(name) mutex.acquire()
self.get(name)
mutex.release() if __name__ == "__main__": mutex = Lock()
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i, mutex))
p.start()
执行结果
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人1>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人2> 购票成功
剩余票数为 [0]
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
with lock
相当于lock.acquire(),执行完自代码块自动执行lock.release()
from multiprocessing import Process
from multiprocessing import Lock
import time
import json class Foo(object): def search(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"])) def get(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟 with open("db.txt", "w") as f_write:
json.dump(dic, f_write) print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"]) else:
print("没票了,抢光了") def task(self, name, mutex):
self.search(name) with mutex: # 相当于lock.acquire(),执行完自代码块自动执行lock.release()
self.get(name) if __name__ == "__main__": mutex = Lock()
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i, mutex))
p.start()
python 并发编程 多进程 模拟抢票的更多相关文章
- python并发编程&多进程(二)
前导理论知识见:python并发编程&多进程(一) 一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_cou ...
- python 并发编程 多进程 互斥锁 目录
python 并发编程 多进程 互斥锁 模拟抢票 互斥锁与join区别
- python并发编程&多进程(一)
本篇理论居多,实际操作见: python并发编程&多进程(二) 一 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 举例(单核+多道,实现多个进程的并发执行) ...
- Python并发编程-多进程
Python并发编程-多进程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.多进程相关概念 由于Python的GIL全局解释器锁存在,多线程未必是CPU密集型程序的好的选择. ...
- python 并发编程 多进程 目录
python multiprocessing模块 介绍 python 开启进程两种方法 python 并发编程 查看进程的id pid与父进程id ppid python 并发编程 多进程 Proce ...
- python 并发编程 多进程 队列目录
python 并发编程 多进程 队列 python 并发编程 多进程 生产者消费者模型介绍 python 并发编程 多进程 生产者消费者模型总结 python 并发编程 多进程 JoinableQue ...
- python 并发编程-- 多进程
一 multiprocessing 模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程 ...
- python 并发编程 多进程 互斥锁与join区别
互斥锁与join 互斥锁和join都可以把并发变成串行 以下代码是用join实现串行 from multiprocessing import Process import time import js ...
- python 并发编程 多进程 生产者消费者模型介绍
一 生产者消费者模型介绍 为什么要使用生产者消费者模型 生产者指的是生产数据的任务,消费者指的是处理数据的任务, 生产数据目的,是为了给消费者处理. 在并发编程中,如果生产者处理速度很快,而消费者处理 ...
随机推荐
- java 集合之HashMap、Hashtable、LinkedHashMap、TreeMap
HashMap 实现了Map接口,线程不安全. 实现原理: HashMap由数组+链表组成,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的. 如果通过hash定位到数组位置没有链表, ...
- 怎么画一条0.5px的边
编者按:本文由人人网FED发表于掘金,并已授权奇舞周刊转载 什么是像素? 像素是屏幕显示最小的单位,在一个1080p的屏幕上,它的像素数量是1920 1080,即横边有1920个像素,而竖边为1080 ...
- c语言获取系统时间并格式化
// #include <time.h> int GetAndFormatSystemTime(char* timeBuff) { if (timeBuff == NULL) { retu ...
- 导入Excel扩展名是.xls 和.xlsx的
1.首先是导入Excel2003以前(包括2003)的版本,扩展名是.xls 的 /** * 操作Excel2003以前(包括2003)的版本,扩展名是.xls * @param templetFil ...
- java——AtomicInteger 中 incrementAndGet与getAndIncrement 两个方法的区别
https://blog.csdn.net/chenkaibsw/article/details/81031950 源码: getAndIncrement: public final int getA ...
- fabric报错:Fatal error: run() received nonzero return code 1 while executing!
今天在使用fabric远程安装rpm时,一直报:Fatal error: run() received nonzero return code 1 while executing! 这看起来也是没笔病 ...
- 14.django返回展示一张图片
urlpatterns = [ path('admin/', admin.site.urls), # 使用django返回一张土图片的时候需要间接的访问一个中间接口,是html页面的中的img的src ...
- QT 问题提问网站
https://stackoverflow.com/questions/tagged/qt
- max pool实现
题目 二维矩阵(nm) 求每个(lw)的子矩阵的最大元素, 就是一维滑动窗口的升级版 自己瞎掰的题解 #include <bits/stdc++.h> using namespace st ...
- linux服务器在线测速
cd /tmpwget https://raw.github.com/sivel/speedtest-cli/master/speedtest.py或者wget https://raw.githubu ...