python 并发编程 多进程 模拟抢票
抢票是并发执行
多个进程可以访问同一个文件
多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务
db.txt
{"count": 1}
并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人
#文件db.txt的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process
import time
import json
class Foo(object):
def search(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
def get(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟
with open("db.txt", "w") as f_write:
json.dump(dic, f_write)
print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"])
else:
print("没票了,抢光了")
def task(self, name):
self.search(name)
self.get(name)
if __name__ == "__main__":
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i,))
p.start()
总结:程序出现数据写入错乱
大家都查到票为1,都购票成功
<路人1>用户 查看剩余票数为 [1]
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人1> 购票成功
剩余票数为 [0]
<路人2> 购票成功
剩余票数为 [0]
<路人3> 购票成功
剩余票数为 [0]
<路人4> 购票成功
剩余票数为 [0]
<路人5> 购票成功
剩余票数为 [0]
<路人6> 购票成功
剩余票数为 [0]
<路人7> 购票成功
剩余票数为 [0]
<路人8> 购票成功
剩余票数为 [0]
<路人9> 购票成功
剩余票数为 [0]
<路人10> 购票成功
剩余票数为 [0] 总结程序出现数据写入错乱
加锁处理:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全
购票功能不应该并发执行,查票应该是并发执行的
查票准不准确不重要,有可能这张票就被别人买走
一个人写完以后,让另外一个人基于上一个人写的结果,再做购票操作
#把文件db.txt的内容重置为:{"count":1}
from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
def search(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
def get(self, name):
with open("db.txt", "r") as f_read:
dic = json.load(f_read)
if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟
with open("db.txt", "w") as f_write:
json.dump(dic, f_write)
print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"])
else:
print("没票了,抢光了")
def task(self, name, mutex):
self.search(name)
mutex.acquire()
self.get(name)
mutex.release()
if __name__ == "__main__":
mutex = Lock()
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i, mutex))
p.start()
执行结果
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人1>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人2> 购票成功
剩余票数为 [0]
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
with lock
相当于lock.acquire(),执行完自代码块自动执行lock.release()
from multiprocessing import Process
from multiprocessing import Lock
import time
import json class Foo(object): def search(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) time.sleep(1) # 模拟读数据的网络延迟
print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"])) def get(self, name): with open("db.txt", "r") as f_read:
dic = json.load(f_read) if dic["count"] > 0:
dic["count"] -= 1
time.sleep(1) # 模拟写数据的网络延迟 with open("db.txt", "w") as f_write:
json.dump(dic, f_write) print("<%s> 购票成功" % name)
print("剩余票数为 [%s]" % dic["count"]) else:
print("没票了,抢光了") def task(self, name, mutex):
self.search(name) with mutex: # 相当于lock.acquire(),执行完自代码块自动执行lock.release()
self.get(name) if __name__ == "__main__": mutex = Lock()
obj = Foo()
for i in range(1,11): # 模拟并发10个客户端抢票
p = Process(target=obj.task, args=("路人%s" % i, mutex))
p.start()
python 并发编程 多进程 模拟抢票的更多相关文章
- python并发编程&多进程(二)
前导理论知识见:python并发编程&多进程(一) 一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_cou ...
- python 并发编程 多进程 互斥锁 目录
python 并发编程 多进程 互斥锁 模拟抢票 互斥锁与join区别
- python并发编程&多进程(一)
本篇理论居多,实际操作见: python并发编程&多进程(二) 一 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 举例(单核+多道,实现多个进程的并发执行) ...
- Python并发编程-多进程
Python并发编程-多进程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.多进程相关概念 由于Python的GIL全局解释器锁存在,多线程未必是CPU密集型程序的好的选择. ...
- python 并发编程 多进程 目录
python multiprocessing模块 介绍 python 开启进程两种方法 python 并发编程 查看进程的id pid与父进程id ppid python 并发编程 多进程 Proce ...
- python 并发编程 多进程 队列目录
python 并发编程 多进程 队列 python 并发编程 多进程 生产者消费者模型介绍 python 并发编程 多进程 生产者消费者模型总结 python 并发编程 多进程 JoinableQue ...
- python 并发编程-- 多进程
一 multiprocessing 模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程 ...
- python 并发编程 多进程 互斥锁与join区别
互斥锁与join 互斥锁和join都可以把并发变成串行 以下代码是用join实现串行 from multiprocessing import Process import time import js ...
- python 并发编程 多进程 生产者消费者模型介绍
一 生产者消费者模型介绍 为什么要使用生产者消费者模型 生产者指的是生产数据的任务,消费者指的是处理数据的任务, 生产数据目的,是为了给消费者处理. 在并发编程中,如果生产者处理速度很快,而消费者处理 ...
随机推荐
- HTTP协议的请求方法
HTTP概念: HTTP是一个基于TCP/IP通信协议来传递数据,包括html文件.图像.结果等,即是一个客户端和服务器端请求和应答的标准 1.http无连接:限制每次连接只处理一个请求,服务端完成客 ...
- elementUI中的el-xxx标签解释
点击跳转地址:https://blog.csdn.net/Tom__cy/article/details/89680067 el-col :整体,el-container: 主体区域el-toolti ...
- Haproxy-4层和7层代理负载实战
目录 HAProxy是什么 HAProxy的核心能力和关键特性 HAProxy的核心功能 HAProxy的关键特性 HAProxy的安装和运行 安装 运行 添加日志 使用HAProxy搭建L7负载均衡 ...
- C#之扩展方法 default(T)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- HDU 6578 Blank
hdu题面 Time limit 1000 ms Memory limit 262144 kB OS Windows Source 2019 Multi-University Training Con ...
- C# 利用*.SQL文件自动建库建表等的类
/// <summary> /// 自动建库建表 /// </summary> public class OperationSqlFile { SqlConnection sq ...
- android系统时间格式转换工具类
代码依旧非常简单,只不过因为这个方法极为常用,因此体现的还是封装的思想. package com.ctbri.weather.utils; import java.text.SimpleDateFor ...
- rtmp协议分析
最近需要做一个rtmp服务器,着手分析一下rtmp协议,开干. rtmp握手 这个推荐一篇文章讲解得比较透彻http://blog.sina.com.cn/s/blog_676e11660102v8b ...
- leetcode-mid-sorting and searching-162. Find Peak Element
mycode 54.81% class Solution(object): def findPeakElement(self, nums): """ :type num ...
- Linux驱动开发10——内核环形双向链表
Linux内核环形双向链表本身不实现锁机制,需要驱动本身完成锁机制实现. 1.1.list_head结构体 #include <linux/list.h> struct list_head ...