Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers
The statements that describe valid input are known as preconditions and the conditions that the output should satisfy when the program has run are known as postconditions.
Universal quantification, which tells us that a predicate is true for every element under consideration,
Existential quantification, which tells us that there is one or more element under consideration for which the predicate is true.
DEFINITION 1
The universal quantification of P (x) is the statement “P (x) for all values of x in the domain.”
The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀ is called the universal quantifier.
We read ∀xP (x) as “for all xP (x)” or “for every xP (x).”
An element for which P (x) is false is called a counterexample of ∀xP (x).
DEFINITION 2
The existential quantification of P (x) is the proposition “There exists an element x in the domain such that P (x).”
We use the notation ∃xP (x) for the existential quantification of P (x). Here ∃ is called the existential quantifier.
Binding Variables When a quantifier is used on the variable x, we say that this occurrence of the variable is bound.
An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free.
All the variables that occur in a propositional function must be bound or set equal to a particular value to turn it into a proposition.
This can be done using a combination of universal quantifiers, existential quantifiers, and value assignments.
The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Consequently,
a variable is free if it is outside the scope of all quantifiers in the formula that specify this variable.
The uniqueness quantifier, denoted by ∃! or ∃1.
The notation ∃!xP (x) [or ∃1xP (x)] states “There exists a unique x such that P (x) is true.”
Other phrases for uniqueness quantification include “there is exactly one” and “there is one and only one.”
For instance, ∃!x(x − 1 = 0), where the domain is the set of real numbers, states that there is a unique real number x such that x − 1 = 0.
This is a true statement, as x = 1 is the unique real number such that x − 1 = 0.
Quantifiers with Restricted Domains
An abbreviated notation is often used to restrict the domain of a quantifier.
In this nota-tion, a condition a variable must satisfy is included after the quantifier.
Precedence of Quantifiers The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional calculus.
For example, ∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x). In other words, it means (∀xP (x)) ∨ Q(x) rather than ∀x(P (x) ∨ Q(x)).
DEFINITION 3
Statements involving predicates and quantifiers are logically equivalent if and only if
they have the same truth value no matter which predicates are substituted into these
statements and which domain of discourse is used for the variables in these propositional functions.
We use the notation S ≡ T to indicate that two statements S and T involving predicates and quantifiers are logically equivalent.
Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.4 Predicates and Quantifiers的更多相关文章
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.3 Propositional Equivalences
DEFINITION 1 A compound proposition that is always true,no matter what the truth values of the propo ...
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic
Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits
- Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.1 Propositional Logic
propositional variables (or statement variables), letters used for propositional variables are p, q, ...
- 经典书Discrete.Mathematics上的大神
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- 离散数学及其应用(Discrete Mathematica With Application 7th)学习笔记 第一章
目前本人只进行到了第五章的章末补充练习,应该是从4月6号开始学习的,又是英文版,而且基本就下班回家抽2个小时左右去学,所以进度较慢. 由于本质是数学,除了一些程序处理和大计算量的问题,基本上一本草稿本 ...
- Linux新手必看:浅谈如何学习linux
本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix问题1:版本的选择 北美用redhat,欧洲用SuSE, ...
- 新手学习Linux之快速上手分析
一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...
- [转载] Linux新手必看:浅谈如何学习linux
本文转自 https://www.cnblogs.com/evilqliang/p/6247496.html 本文在Creative Commons许可证下发布 一.起步 首先,应该为自己创造一个学习 ...
- 计算机程序设计的史诗TAOCP
倘若你去问一个木匠学徒:你需要什么样的工具进行工作,他可能会回答你:“我只要一把锤子和一个锯”.但是如果你去问一个老木工或者是大师级的建筑师,他会告诉你“我需要一些精确的工具”.由于计算机所解决的问题 ...
随机推荐
- C#基础知识之图解TCP IP》读书笔记
一.网络基础知识 1. 计算机使用模式的演变 2.协议 协议就是计算机与计算机之间通过网络实现通信事先达成的一种“约定”.这种“约定”使那些由不同厂商的设备.不同的CPU以及不同的操作系统组成的计算机 ...
- Maven灵活构建(转载)
https://blog.csdn.net/sin90lzc/article/details/7552033
- mysql:You can't specify target table 'sessions' for update in FROM clause
更新数据时,在where条件子句里面如果想使用子查询按条件更新部分数据,需要将查询的结果设为临时表.可以参考: https://blog.csdn.net/poetssociety/article/d ...
- 【leetcode】Submission Details
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar ...
- 4. ClustrixDB CLX命令详解
Clustrix提供了一个名为clx的实用程序来管理其分布式ClustrixDB数据库. 命令在 /opt/clustrix/bin/ 下面 sudo su - clxm 用户即可使用 clx hel ...
- web下载文件夹
1.文件下载有两种方式:一种是超链接,一种是Servlet提供下载. 2.超链接下载时:当文件可以在网页直接打开时,会直接打开文件,而不是下载,当文件打开不了时,会提供下载窗口. 3.超链接下载原理 ...
- Java多级文件夹上传
javaweb上传文件 上传文件的jsp中的部分 上传文件同样可以使用form表单向后端发请求,也可以使用 ajax向后端发请求 1.通过form表单向后端发送请求 <form id=" ...
- codevs 1255 搭积木 x
1255 搭积木 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 一种积木搭建方式,高为H的积木,最底层有M个积木,每一层的积木 ...
- pycharm问题集锦
1.pycharm的激活方式 参考博客https://blog.csdn.net/u014044812/article/details/78727496 2.总是出现波浪线,如下问题 问题原因:knn ...
- 洛谷P3948 数据结构——题解
题目传送 感觉这道题秀了我一地的智商... 审题没审好,没确定带修改的操作中询问的次数<=1000,且max和min都是事先给好.不变的.想了半天线段树.分块,却忘了最基础的暴力. 写不出题时先 ...