最近几个月一直在和几个小伙伴做Deep Learning相关的事情。除了像tensorflow,gpu这些框架或工具之外,最大的收获是思路上的,Neural Network相当富余变化,发挥所想、根据手头的数据和问题去设计创新吧。今天聊一个Unsupervised Learning的NN:Autoencoder。

Autoencoder的特点是:首先,数据中只有X,没有y;此外,输入和输出的nodes数量相同,可以把其定义为用神经网络对input data压缩、取精华后的重构。其结构图如下:

听起来蛮抽象,但从其architecture上面,来看,首先是全连接(fully-connected network)。和Feed-forward NN的重点不同是,FFNN的neurons per layer逐层递减,而Autoencoder则是neurons per layer先减少,这部分叫做Encode,中间存在一个瓶颈层,然后再逐渐放大至原先的size,这部分叫做Decode。然后在output layer,希望输出和输入一致,以此思路构建loss function (MSE),然后再做Back-propagation。

工作流图如下:

数据集用的是MNIST手写数字库,encode有3层,decode有3层,核心代码可见最下方。压缩并还原之后,得出的图片对比如下,可见Autoencoder虽然在bottleneck处将数据压缩了很多,但经过decode之后,基本是可以还原图片数据的 :

当然,如果压缩再解压,得到差不多的图片,其实意义不大,那我们考虑在训练结束后,只用encode的部分,即Autoencoder的前半部来给数据做降维,那么会得到什么结果呢?在这个例子中,为了更好地把数据降到2维,我加了另外2层hidden layer,并且bottleneck层移除了activation function,得到的结果如下:

可以看到,数据被从784维空间中压缩到2维,并且做了类似clustering的操作。

# Parameter
learning_rate = 0.001
training_epochs = 50
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28) # hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
n_hidden_3 = 64 # 3rd layer num features X = tf.placeholder(tf.float32, [None,n_input]) weights = {
'encoder_h1':tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b3': tf.Variable(tf.random_normal([n_input])),
} # Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
return layer_3 # Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
return layer_3 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op # After
# Targets (Labels) are the input data.
y_true = X # Before # Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!")

Autoencoder基本操作及其Tensorflow实现的更多相关文章

  1. TensorFlow、numpy、matplotlib、基本操作

    一.常量的定义 import tensorflow as tf #类比 语法 api 原理 #基础数据类型 运算符 流程 字典 数组 data1 = tf.constant(2,dtype=tf.in ...

  2. TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派

    TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派 来源:DataCastle数据城堡 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学 ...

  3. python_Tensorflow学习(三):TensorFlow学习基础

    一.矩阵的基本操作 import tensorflow as tf   # 1.1矩阵操作 sess = tf.InteractiveSession() x = tf.ones([2, 3], &qu ...

  4. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  5. 关于深度学习之TensorFlow简单实例

    1.对TensorFlow的基本操作 import tensorflow as tf import os os.environ[" a=tf.constant(2) b=tf.constan ...

  6. tensorflow-笔记02

    TensorFlow扩展功能 自动求导.子图的执行.计算图控制流.队列/容器 1.TensorFlow自动求导 在深度学习乃至机器学习中,计算损失函数的梯度是最基本的需求,因此TensorFlow也原 ...

  7. TensorFlow 实现深度神经网络 —— Denoising Autoencoder

    完整代码请见 models/DenoisingAutoencoder.py at master · tensorflow/models · GitHub: 1. Denoising Autoencod ...

  8. TensorFlow自编码器(AutoEncoder)之MNIST实践

    自编码器可以用于降维,添加噪音学习也可以获得去噪的效果. 以下使用单隐层训练mnist数据集,并且共享了对称的权重参数. 模型本身不难,调试的过程中有几个需要注意的地方: 模型对权重参数初始值敏感,所 ...

  9. TensorFlow 基本变量定义,基本操作,矩阵基本操作

    使用 TensorFlow 进行基本操作的实例,这个实例主要是使用 TensorFlow 进行了加法运算. 包括使用 constant 常量进行加法运算和使用 placeholder 进行变量加法运算 ...

随机推荐

  1. 让网站动起来!12款优秀的 jQuery 动画

    Textillate.js 介绍:Textillate.js 是一个简单的 CSS3 文本动画插件.结合了一些非常棒的库,把 CSS3 动画轻松应用到任何文本.只需要在项目中简单地引入 textill ...

  2. React中state和props分别是什么?

    整理一下React中关于state和props的知识点. 在任何应用中,数据都是必不可少的.我们需要直接的改变页面上一块的区域来使得视图的刷新,或者间接地改变其他地方的数据.React的数据是自顶向下 ...

  3. python学习第四十八天json模块与pickle模块差异

    在开发过程中,字符串和python数据类型进行转换,下面比较python学习第四十八天json模块与pickle模块差异. json 的优点和缺点 优点  跨语言,体积小 缺点 只能支持 int st ...

  4. python pickle模块的用法

    pickle用于python特有的类型,和python的数据类型间进行转换,提供四个功能 dumps,dump,loads,load. pickle 的用法 #pickle.dumps 将数据通过特殊 ...

  5. C# DataTable与实体的相互转换

    using System; using System.Collections.Generic; using System.Data; using System.Reflection; namespac ...

  6. BCR-ABL融合基因及检测

    费城染色体 费城染色体(Philadelphia chromosome, Ph (or Ph') chromosome),或称费城染色体易位(Philadelphia translocation),是 ...

  7. #1062 - Duplicate entry '0' for key 'PRIMARY'—— mysql的小问题

    问题:# 1062 -重复输入“0”. 原因:我估计可能是数据表中主键这一栏已经有一个为“0”了,一般出现这种问题是以int类型的字段在输入时没有输如数据,而int类型默认值为“0”,而你之前第一条数 ...

  8. popen, pclose - process I/O

    SYNOPSIS #include <stdio.h> FILE *popen(const char *command, const char *type); int pclose(FIL ...

  9. 优化Nginx并发访问量

    通过修改Nginx配置文件,优化linux内核参数,实现高并发测试. 1.优化前使用ab高并发测试 [root@proxy ~]# ab -n 2000 -c 2000 http://192.168. ...

  10. less:匹配模式

    相当于JS中的if(不完全是),满足条件后才能匹配 .margin(top, @width: 5px) { margin: @width 0 0 0; } .margin(right, @width: ...