Autoencoder基本操作及其Tensorflow实现
最近几个月一直在和几个小伙伴做Deep Learning相关的事情。除了像tensorflow,gpu这些框架或工具之外,最大的收获是思路上的,Neural Network相当富余变化,发挥所想、根据手头的数据和问题去设计创新吧。今天聊一个Unsupervised Learning的NN:Autoencoder。
Autoencoder的特点是:首先,数据中只有X,没有y;此外,输入和输出的nodes数量相同,可以把其定义为用神经网络对input data压缩、取精华后的重构。其结构图如下:
听起来蛮抽象,但从其architecture上面,来看,首先是全连接(fully-connected network)。和Feed-forward NN的重点不同是,FFNN的neurons per layer逐层递减,而Autoencoder则是neurons per layer先减少,这部分叫做Encode,中间存在一个瓶颈层,然后再逐渐放大至原先的size,这部分叫做Decode。然后在output layer,希望输出和输入一致,以此思路构建loss function (MSE),然后再做Back-propagation。
工作流图如下:
数据集用的是MNIST手写数字库,encode有3层,decode有3层,核心代码可见最下方。压缩并还原之后,得出的图片对比如下,可见Autoencoder虽然在bottleneck处将数据压缩了很多,但经过decode之后,基本是可以还原图片数据的 :
当然,如果压缩再解压,得到差不多的图片,其实意义不大,那我们考虑在训练结束后,只用encode的部分,即Autoencoder的前半部来给数据做降维,那么会得到什么结果呢?在这个例子中,为了更好地把数据降到2维,我加了另外2层hidden layer,并且bottleneck层移除了activation function,得到的结果如下:
可以看到,数据被从784维空间中压缩到2维,并且做了类似clustering的操作。
# Parameter
learning_rate = 0.001
training_epochs = 50
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28) # hidden layer settings
n_hidden_1 = 256 # 1st layer num features
n_hidden_2 = 128 # 2nd layer num features
n_hidden_3 = 64 # 3rd layer num features X = tf.placeholder(tf.float32, [None,n_input]) weights = {
'encoder_h1':tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b3': tf.Variable(tf.random_normal([n_input])),
} # Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
return layer_3 # Building the decoder
def decoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
return layer_3 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op # After
# Targets (Labels) are the input data.
y_true = X # Before # Define loss and optimizer, minimize the squared error
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!")
Autoencoder基本操作及其Tensorflow实现的更多相关文章
- TensorFlow、numpy、matplotlib、基本操作
一.常量的定义 import tensorflow as tf #类比 语法 api 原理 #基础数据类型 运算符 流程 字典 数组 data1 = tf.constant(2,dtype=tf.in ...
- TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派
TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派 来源:DataCastle数据城堡 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学 ...
- python_Tensorflow学习(三):TensorFlow学习基础
一.矩阵的基本操作 import tensorflow as tf # 1.1矩阵操作 sess = tf.InteractiveSession() x = tf.ones([2, 3], &qu ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- 关于深度学习之TensorFlow简单实例
1.对TensorFlow的基本操作 import tensorflow as tf import os os.environ[" a=tf.constant(2) b=tf.constan ...
- tensorflow-笔记02
TensorFlow扩展功能 自动求导.子图的执行.计算图控制流.队列/容器 1.TensorFlow自动求导 在深度学习乃至机器学习中,计算损失函数的梯度是最基本的需求,因此TensorFlow也原 ...
- TensorFlow 实现深度神经网络 —— Denoising Autoencoder
完整代码请见 models/DenoisingAutoencoder.py at master · tensorflow/models · GitHub: 1. Denoising Autoencod ...
- TensorFlow自编码器(AutoEncoder)之MNIST实践
自编码器可以用于降维,添加噪音学习也可以获得去噪的效果. 以下使用单隐层训练mnist数据集,并且共享了对称的权重参数. 模型本身不难,调试的过程中有几个需要注意的地方: 模型对权重参数初始值敏感,所 ...
- TensorFlow 基本变量定义,基本操作,矩阵基本操作
使用 TensorFlow 进行基本操作的实例,这个实例主要是使用 TensorFlow 进行了加法运算. 包括使用 constant 常量进行加法运算和使用 placeholder 进行变量加法运算 ...
随机推荐
- C/C++表达式求值问题
转载:https://originlee.com/2016/05/01/eval-expression-in-c-and-cpp/ 前几日,一个刚学编程的老朋友问了我一个问题: int i = 0;i ...
- nginx负载均衡的搭建和简单例子
一,nginx 下载地址:http://nginx.org/en/download.html 二,下载对应版本 三,打开下载的安装包:如下图 四,运行nginx.exe 1,这个是时候,程序运行都是一 ...
- 给当当同学的random data
m**o 00'57"32街**o 00'52"23c**6 00'44"15斗**6 00'57"58n**5 00'32"04s**p 00'51 ...
- 【推荐系统】知乎live入门4.排序
参考链接 [推荐系统]知乎live入门 目录 1. 概述 2. 排序模型建模 3. 排序总结 ===================================================== ...
- Manjaro美化 配置教程
Manjaro Linux的美化 切换源 sudo vi /etc/pacman.conf 加入arch源 [archlinuxcn] SigLevel = Optional TrustedOnly ...
- selenium鼠标悬停失效,用js语句模拟
写脚本时,有很多case需要要用的鼠标悬停出菜单 用到了ActionChains(self.driver).move_to_element(el).perform(),但是脚本写完以后,单个case执 ...
- [Luogu2600]合并神犇(dp,贪心)
[Luogu2600]合并神犇 题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷 ...
- j函数 判断以 什么开头
1.str.charAt(index) 返回字符串中指定位置的字符. str 是字符串 我们要将获得的数据 转化为字符串 var code = res.statusCode.toString(); ...
- thinkphp 视图view
一. 继承Controller类 <?php namespace app\index\controller; use http\Params; use think\Config; use thi ...
- Qt 倒计时验证码按钮效果
本来还想继承QTimer跟QPushButton去实现,后来发现可以使用两个QTimer来实现: 验证码倒计时间:(60s) 封装到widget类里: 需要这几个数据:Button,TimerA,Ti ...