题面

这道题在数学方面没什么难度:

对于每一个正整数n:

质因数分解后可以写成n=a1^k1a2^k2……*ai^ki

所求的数的因数和f(n)就等于f(n)=(1+a1+a1^2+……+a1^k1)(1+a2+a2^2+……+a2^k2)……*(1+ai+ai^2+……+ai^ki)

利用等比数列通项公式可以O(1)的时间算出每一项;

然后可以使用扩展欧几里得,费马小定理或求解逆元。

但,仅仅是这样吗?

注意,模数p是9901,十分的小,但是要求逆元的数完全可能是9901的倍数,从而与9901不互质,从而没有逆元

例如:950497 1 ans=2;

在处理完以上的特殊情况后我们可以十分生气的一边骂出题人一边AC掉它;

#include <bits/stdc++.h>
#define int long long
#define p 9901
using namespace std;
long long KSM(long long a,long long b)
{
long long res=;
while(b){
if(b&) res=res*a%p;
a=a*a%p;
b/=;
}
return res;
}
long long yinzi[],cnt,num[];
void fenjie(int a)
{
for(int i=;i<=sqrt(a);i++){
if(a%i==){
yinzi[++cnt]=i;
while(a%i==){
++num[cnt];
a/=i;
}
}
}
if(a>=){
yinzi[++cnt]=a;
num[cnt]=;
}
}
signed main()
{
int a,b;
cin>>a>>b;
fenjie(a);
for(int i=;i<=cnt;i++){
num[i]=num[i]*b;
}
long long ans=;
for(int i=;i<=cnt;i++){
ans=(ans*(-KSM(yinzi[i],num[i]+))%p*KSM((-yinzi[i]),p-))%p;
}
if(ans==){
cout<<""<<endl;
return ;
}
cout<<ans;
}

洛谷 P1593 因子和 题解的更多相关文章

  1. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  2. 洛谷 P1593 因子和 || Sumdiv POJ - 1845

    以下弃用 这是一道一样的题(poj1845)的数据 没错,所有宣称直接用逆元/快速幂+费马小定理可做的,都会被hack掉(包括大量题解及AC代码) 什么原因呢?只是因为此题的模数太小了...虽然990 ...

  3. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  4. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  5. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  6. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

  7. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  8. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  9. 【洛谷P3410】拍照题解(最大权闭合子图总结)

    题目描述 小B有n个下属,现小B要带着一些下属让别人拍照. 有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影.如果这一些人没带齐那么就不能拍照,小B也不会得到钱. 注意:带下属不是白带的 ...

随机推荐

  1. inline元素导航栏案例

    练习一个超链接元素在文档流当中,a标签显示出来的inline这种元素的特性.我们可以用display来将它转换成inline-block类型,这样我们就可以设置它的高度,宽度和它的背景颜色等等特性了. ...

  2. Selenium 环境安装

    前言: 本人在学习Selenium时,用的版本是Python3.6+Selenium3,后续写的所有学习资料都是基于这套环境.在安装Selenium3前,请确保本机已安装好了Python3,如未安装可 ...

  3. JavaWeb_客户端相对/绝对路径和服务器端路径

    客户端的绝对路径和相对路径 相对路径:相对与某个基准目录的路径,在同一根目录下各子目录文件之间的相互引用, 绝对路径:指目录下的绝对位置,直接到的目标位置 @charset "UTF-8&q ...

  4. 客户端框架-MVP

    MVP Model-View-Presenter MVP是把MVC中的Controller换成了Presenter(呈现),目的就是为了完全切断View跟Model之间的联系,由Presenter充当 ...

  5. [JZO6401]:Time(贪心+树状数组)

    题目描述 小$A$现在有一个长度为$n$的序列$\{x_i\}$,但是小$A$认为这个序列不够优美. 小$A$认为一个序列是优美的,当且仅当存在$k\in [1,n]$,满足:$$x_1\leqsla ...

  6. 两种建立堆的方法HeapInsert & Heapify

    参考 堆排序中两种建堆方法的比较 第一种方法HeapInsert 它可以假定我们事先不知道有多少个元素,通过不断往堆里面插入元素进行调整来构建堆. 它的大致步骤如下: 首先增加堆的长度,在最末尾的地方 ...

  7. jQuery .submit()

    .submit() Events > Form Events | Forms .submit( handler )Returns: jQuery Description: Bind an eve ...

  8. loadrunner事务判断常用方法

    //判断关联到的字符串是否为空 if (strlen(lr_eval_string("{param}")) == 0); //判断关联的字符串是否跟期望的值相同 if(strcmp ...

  9. docker top 和 docker exec ps 命令查看的PID区别

    区别在于 docker top 查看到的 PID 属于宿主机的 PID.我们可以通过  宿主机执行 ps -ef 查看结果 也可以进去容器执行 top 和 ps查看结果

  10. leetcode 658找到k个最接近的元素

    class Solution { public: vector<int> findClosestElements(vector<int>& arr, int k, in ...