Codeforces 1132G(dfs序+线段树)
题面
分析
对于每一个数a[i],找到它后面第一个大于它的数a[p],由p向i连边,最终我们就会得到一个森林,且p是i的父亲。为了方便操作,我们再增加一个虚拟节点n+1,把森林变成树。
由于序列不是递增的,不能二分。维护一个单调栈,栈顶元素最小。从n到1依次对每个 数操作,弹出栈里比它小的数。如果栈为空,说明该数是森林中的根节点,向n+1连边。否则栈顶元素就是第一个大于它的数,向它的编号连边即可。
我们发现,对于每个查询区间内的所有数,它对应着树上的某些节点,记为标记节点。如果把标记节点之间的非标记节点去掉,我们就会得到一棵新树,新树上从某个节点到根的一条路径对应着一个满足条件的序列,则最大序列长度等于新树上从叶子节点到根的最长路径。这样,我们就把问题转化为了树上的最长路径。
显然不能对每一个询问建一棵新树。我们发现新树上的路径长度就是原树上的路径经过的标记节点个数,如图(加粗的节点为标记节点)。
所以,我们建立一棵线段树,线段树的叶子节点存储原树上每个节点到根的路径上的标记节点个数,线段树维护最大值。
我们枚举每个长度为k的区间[i,i+k-1],显然从前一个区间转移到当前区间时,只会增加一个标记节点,减少一个标记节点。每增加一个标记节点i,我们就将i的子树内的所有节点的值+1,否则-1。答案即为整颗线段树的最大值
时间复杂度\(O(n\log n)\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
#include<algorithm>
#define maxn 1000005
using namespace std;
int n,k;
int a[maxn];
struct edge{
int from;
int to;
int next;
}E[maxn<<1];
int head[maxn];
int sz=1;
void add_edge(int u,int v){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
head[u]=sz;
}
int cnt=0;
int lb[maxn],rb[maxn];
void dfs(int x,int fa){
lb[x]=++cnt;
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dfs(y,x);
}
}
rb[x]=cnt;
}
struct node{
int l;
int r;
int v;
int mark;
}tree[maxn<<2];
void push_up(int pos){
tree[pos].v=max(tree[pos<<1].v,tree[pos<<1|1].v);
}
void build(int l,int r,int pos){
tree[pos].l=l;
tree[pos].r=r;
if(l==r){
return;
}
int mid=(l+r)>>1;
build(l,mid,pos<<1);
build(mid+1,r,pos<<1|1);
push_up(pos);
}
void push_down(int pos){
if(tree[pos].mark){
tree[pos<<1].v+=tree[pos].mark;
tree[pos<<1].mark+=tree[pos].mark;
tree[pos<<1|1].v+=tree[pos].mark;
tree[pos<<1|1].mark+=tree[pos].mark;
tree[pos].mark=0;
}
}
void update(int L,int R,int v,int pos){
if(L<=tree[pos].l&&R>=tree[pos].r){
tree[pos].v+=v;
tree[pos].mark+=v;
return;
}
push_down(pos);
int mid=(tree[pos].l+tree[pos].r)>>1;
if(L<=mid) update(L,R,v,pos<<1);
if(R>mid) update(L,R,v,pos<<1|1);
push_up(pos);
}
int query(int L,int R,int pos){
if(L<=tree[pos].l&&R>=tree[pos].r){
return tree[pos].v;
}
push_down(pos);
int mid=(tree[pos].l+tree[pos].r)>>1;
int ans=0;
if(L<=mid) ans=max(ans,query(L,R,pos<<1));
if(R>mid) ans=max(ans,query(L,R,pos<<1|1));
return ans;
}
int nex[maxn];
void init(){
stack<int>s;
for(int i=n;i>=1;i--){
while(!s.empty()&&a[s.top()]<=a[i]) s.pop();
if(!s.empty()){
int p=s.top();
add_edge(p,i);
add_edge(i,p);
}else{
add_edge(n+1,i);
add_edge(i,n+1);
}
s.push(i);
}
dfs(n+1,0);
}
int main(){
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
init();
build(1,n+1,1);
for(int i=1;i<=k;i++){
update(lb[i],rb[i],1,1);
}
for(int i=1;i+k-1<=n;i++){
int r=i+k-1;
printf("%d ",query(1,n+1,1));
update(lb[i],rb[i],-1,1);
update(lb[r+1],rb[r+1],1,1);
}
}
Codeforces 1132G(dfs序+线段树)的更多相关文章
- CodeForces 877E DFS序+线段树
CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...
- Codeforces 396C (DFS序+线段树)
题面 传送门 题目大意: 给定一棵树,每个点都有权值,边的长度均为1,有两种操作 操作1:将节点u的值增加x,并且对于u的子树中的任意一个点v,将它的值增加x-dist(u,v)*k, dist(u, ...
- Codeforces 1110F(DFS序+线段树)
题面 传送门 分析 next_id = 1 id = array of length n filled with -1 visited = array of length n filled with ...
- Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
- Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
- Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)
A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- CodeForces 877E Danil and a Part-time Job(dfs序+线段树)
Danil decided to earn some money, so he had found a part-time job. The interview have went well, so ...
- 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 339 Solved: 130[Submit][Status][Discuss] D ...
- BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)
题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...
随机推荐
- Javascript 数组的一些操作
(1) shift 删除原数组第一项,并返回删除元素的值:如果数组为空则返回undefined var a = [1,2,3,4,5]; var b = a.shift(); //a:[2,3,4, ...
- 20180315-Python面向对象编程设计和开发
1.在子类中调用父类的方法 在子类派生出的新方法中,往往需要重用父类的方法,我们有两种实现方式: 方式一:父类名.父类方法() Animal.__init__(self,name) 方式二:super ...
- [算法学习]开始leetcode之旅
在此记录一下用javascript刷leetcode的过程,每天都要坚持! 1.Two Sum Given an array of integers, find two numbers such th ...
- Sass函数:数字函数-percentage()
1.percentage() percentage()函数主要是将一个不带单位的数字转换成百分比形式: >> percentage(.2) 20% >> percentage( ...
- BZOJ3038 上帝造题的七分钟
Time Limit: 3 Sec Memory Limit: 128 MB Description XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. "第一分钟,X说, ...
- JavaScript的MD5加密
1.首先要到http://pajhome.org.uk/crypt/md5/下载js文件. 2.在页面文件中添加: <script type="text/javascript" ...
- 英语单词contributors
contributors 来源——github网站 翻译 n. 贡献者:参与者:编著者(contributor的复数形式) TOEFL | GMAT 词根:cont ...
- 使用C#获取IP地址方法
C#中如何获取IP地址?,看到问题的时候我也很纠结,纠结的不是这个问题是如何的难回答,而是纠结的是这些问题都是比较基本的常识,也是大家会经常用到的.但是却不断的有人问起,追根究底的原因估计就是没有好好 ...
- codeforces 848A - From Y to Y(构造)
原题链接:http://codeforces.com/problemset/problem/848/A 题意:让我们构造一个字符串.这里有一种操作:取走这个字符串的若干部分,分成两部分,然后将这两部分 ...
- ID3,C4.5和CART三种决策树的区别
ID3决策树优先选择信息增益大的属性来对样本进行划分,但是这样的分裂节点方法有一个很大的缺点,当一个属性可取值数目较多时,可能在这个属性对应值下的样本只有一个或者很少个,此时它的信息增益将很高,ID3 ...