题目描述

Farmer John's cows are getting restless about their poor telephone service; they want FJ to replace the old telephone wire with new, more efficient wire. The new wiring will utilize N (2 ≤ N ≤ 100,000) already-installed telephone poles, each with some heighti meters (1 ≤ heighti ≤ 100). The new wire will connect the tops of each pair of adjacent poles and will incur a penalty cost C × the two poles' height difference for each section of wire where the poles are of different heights (1 ≤ C ≤ 100). The poles, of course, are in a certain sequence and can not be moved.

Farmer John figures that if he makes some poles taller he can reduce his penalties, though with some other additional cost. He can add an integer X number of meters to a pole at a cost of X2.

Help Farmer John determine the cheapest combination of growing pole heights and connecting wire so that the cows can get their new and improved service.

给出若干棵树的高度,你可以进行一种操作:把某棵树增高h,花费为h*h。

操作完成后连线,两棵树间花费为高度差*定值c。

求两种花费加和最小值。

输入格式

* Line 1: Two space-separated integers: N and C

* Lines 2..N+1: Line i+1 contains a single integer: heighti

输出格式

* Line 1: The minimum total amount of money that it will cost Farmer John to attach the new telephone wire.

输入输出样例

输入 #1
5 2
2
3
5
1
4
输出 #1
  15

 
 
显然DP。
 
先暴力,设f[i][j]表示前i棵树,第i棵树高度为j时的最小话费。
  f[i][j]=(j−h[i])2+min(f[i−1][k]+c∗abs(j−k)),k表示第i-1棵树高度为k时。
O(nh2),TLE(调一下常数吸口氧气说不定能过)。
 
将式子分类展开   

  f[i][j]=(j−h[i])2+min(f[i−1][k]−c∗k+c∗j)  (k<=j)

  f[i][j]=(j−h[i])2+min(f[i−1][k]+c∗k−c∗j)  (k>=j)

进行单调队列优化

分两类

  1:令mi = min(f[i-1][k] - c*k);要使min(f[i−1][k]−c∗k+c∗j)最小,就让mi最小。

分两类:1. k小于j,预处理mi即可。2. k等于j,在顺序枚举j的时候k=j即可。在这两种情况中,显然我们能保证k<=j。

2:令mi = min(f[i-1][k] + c*k);要使min(f[i−1][k]+c∗k−c∗j)最小,就让mi最小。

此时倒序枚举即可。能根据答案单调性质保证答案最优且k>=j。

下面now^1的意思就是只记录当前的和前一个(奇偶性变化,省空间)。

Code:

#include<iostream>
#include<cmath>
using namespace std;

;
const int inf = 0x7f7f7f7f;

][],n,c,m;
int h[maxn];
int ans = inf;

int main(){
    cin>>n>>c;
    ;
    ;i<=n;++i)cin>>h[i],m = max(m,h[i]);
    ;i<=m;++i)f[][i] = f[][i] = inf;
    ];i<=m;++i)f[now][i] = (i-h[])*(i-h[]);
    ;i<=n;++i){
        now ^= ;
        int mi = inf;for(int j = h[i-1];j<=m;j++){//从h[i-1]开始,因为高度不会下降到h[i-1]以下。
            mi = min(k,f[now^][j]-j*c);
            if(j >= h[i])f[now][j] = mi+(j-h[i])*(j-h[i])+c*j;
        }
        mi = inf;
        for(int j = m;j>=h[i];--j){
            mi = min(k,f[now^][j]+j*c);
            f[now][j] = min(f[now][j],mi-c*j+(j-h[i])*(j-h[i]));
        }
        ;i<=m;++i)f[now^][i] = inf;
    }
    for(int i=h[n];i<=m;i++)
    ans=min(ans,f[now][i]);
    cout<<ans<<endl;
}
 

[USACO 07NOV]电话线Telephone Wire的更多相关文章

  1. [USACO07NOV]电话线Telephone Wire

    [USACO07NOV]电话线Telephone Wire 时间限制: 1 Sec  内存限制: 128 MB 题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N &l ...

  2. P2885 [USACO07NOV]电话线Telephone Wire

    P2885 [USACO07NOV]电话线Telephone Wire 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话 ...

  3. 【USACO07NOV】电话线Telephone Wire

    题目描述 电信公司要更换某个城市的网线.新网线架设在原有的 N(2 <= N <= 100,000)根电线杆上, 第 i 根电线杆的高度为 height_i 米(1 <= heigh ...

  4. P2885 [USACO07NOV]电话线Telephone Wire——Chemist

    题目: https://www.luogu.org/problemnew/show/P2885 由于把每一根电线杆增加多少高度不确定,所以很难直接通过某种方法算出答案,考虑动态规划. 状态:f [ i ...

  5. [luoguP2885] [USACO07NOV]电话线Telephone Wire(DP + 贪心)

    传送门 真是诡异. 首先 O(n * 100 * 100) 三重循环 f[i][j] 表示到第 i 个柱子,高度是 j 的最小花费 f[i][j] = min(f[i - 1][k] + abs(k ...

  6. 【动态规划】bzoj1705: [Usaco2007 Nov]Telephone Wire 架设电话线

    可能是一类dp的通用优化 Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设 ...

  7. DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885

    本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...

  8. BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP

    BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...

  9. bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)

    1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 441  Solved: ...

随机推荐

  1. Codeforces 1082D (贪心)

    题面 传送门 分析 贪心 将度限制大于1的点连成一条链,然后将度限制等于1的点挂上去 形状如下图,其中(1,2,3)为度数限制>1的点 显然直径长度=(度数限制>1的节点个数)-1+min ...

  2. Edit the AlarmClock in AOSP with android-studio

    1. git the AlarmClock source code on AOSP 2. select 'import project' by android-studio & we will ...

  3. 为什么MySQL索引要使用 B+树,而不是其它树形结构?

    作者:李平 https://www.cnblogs.com/leefreeman/p/8315844.html 一个问题? InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万 为 ...

  4. jar 启动脚本

    前段时间用springboot做项目后,每次重新发布都好麻烦, 所以写了个脚本来配合jenkins 发布: #!/bin/bash APP_NAME=application.jar function ...

  5. java.net.ProtocolException: Exceeded stated content-length of: '13824' bytes

    转自:https://blog.csdn.net/z69183787/article/details/18967927 1. 原因: 因为weblogic会向response中写东西造成的,解决方式是 ...

  6. 四、局域网连接SqlServer

    一.局域网连接SqlServer 一台服务器上装有四个数据库的时候,我们可以通过IP\实例名的方式进行访问. navicat 连接sqlserver数据库

  7. go语言从例子开始之Example36.互斥锁

    在前面的例子中,我们看到了如何使用原子操作来管理简单的计数器.对于更加复杂的情况,我们可以使用一个互斥锁来在 Go 协程间安全的访问数据. Example: package main import ( ...

  8. Minor GC与Full GC分别在什么时候发生?

    Minor GC 当Eden区没有足够空间进行分配时,虚拟机就会进行一次Minor GC 新生代的垃圾收集动作,采用的是复制算法 对于较大的对象,在Minor GC的时候可以直接进入老年代 Full ...

  9. 逗号导致hive报“SemanticException Error in parsing”错误

    > select p.dt, p.cookie_qunar_global, p.refer_domain, p.kwid, p.query_word, p,traffic_type--, p.p ...

  10. HTML基础 块级元素和内联元素

    大多数 HTML 元素被定义为块级元素或内联元素. 块级元素包括:body  from  select  textarea  h1-h6 html table  button  hr  p  ol   ...