题解 CF830D Singer House
\(\texttt{Solution}\)
首先考虑 \(\texttt{dp}\) 维护题目要求的深度为 \(i\), 每个节点最多经过一次的不同有向路径数量 \(f_i\)。
明显的,只维护这个东西是不对的,因为忽视了这样的情况:
这样子这条路径是由原来的被蓝色圈圈包住的两个部分转移而来。
那么考虑记录 \(g_i\) 为两条不相交的有向路径数量。
然后蒟蒻兴冲冲地去 尝试了, 并过了前两个样例,但是过不了第三个样例,这是为什么?
发现 \(g_i\) 也有可能是由三条不相交的有向路径转移而来!
那么正解就浮出水面了:维护深度为 \(i\), \(j\) 条不相交的有向路径数量 \(dp_{i,j}\)。
转移如果想明白了状态其实很简单。这里还是说一下。
首先用背包求出深度为 \(i-1\), 和为 \(j\) 条不相交的有向路径数量 : bb[j] += dp[i - 1][k] * dp[i - 1][j - k]
第一种转移:根结点独立,然后其他的路径让两个子树自由组合 : dp[i][j] += bb[j - 1] + 2 * dp[i - 1][j - 1]
第二种转移:路径不包括根结点,或根结点为路径起点或终点: dp[i][j] += (2 * j + 1) * bb[j] + (4 * j + 2) * dp[i - 1][j]
第三种转移:路径包括根结点,且连接两条原来在子树中是两条链: dp[i][j] += j * (j + 1) * bb[j + 1] + 2 * j * (j + 1) * dp[i - 1][j + 1]
\(\texttt{Code}\)
#include<bits/stdc++.h>
#define L(i, j, k) for(int i = j; i <= k; i++)
#define R(i, j, k) for(int i = j; i >= k; i--)
using namespace std;
const int N = 444;
const int mod = 1e9 + 7;
int n, dp[N][N], bb[N];
int main() {
scanf("%d", &n);
dp[1][1] = 1;
L(i, 2, n) {
fill(bb, bb + n + 1, 0);
L(j, 1, n) L(k, 0, j) (bb[j] += 1ll * dp[i - 1][k] * dp[i - 1][j - k] % mod) %= mod;
dp[i][1] = 1;
L(j, 1, n) {
int t = 0;
(dp[i][j] += (2ll * j + 1) * bb[j] % mod) %= mod;
(dp[i][j] += (4ll * j + 2) % mod * dp[i - 1][j] % mod) %= mod;
(dp[i][j] += 1ll * j * (j + 1) % mod * bb[j + 1] % mod) %= mod;
(dp[i][j] += 2ll * j * (j + 1) % mod * dp[i - 1][j + 1] % mod) %= mod;
(dp[i][j] += bb[j - 1] % mod) %= mod;
(dp[i][j] += 2ll * dp[i - 1][j - 1] % mod) %= mod;
}
}
printf("%d\n", dp[n][1]);
return 0;
}
题解 CF830D Singer House的更多相关文章
- 【做题记录】DP 杂题
P2577 [ZJOI2004]午餐 $\texttt{solution}$ 想到贪心: 吃饭慢的先打饭节约时间, 所以先将人按吃饭时间从大到小排序. 状态: \(f[i][j]\) 表示前 \(i\ ...
- Codeforces 830D Singer House 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/CF830D.html 题解 考虑用 $dp[i][j]$ 表示深度为 $i$ 的树里,有 $j$ 条路径的方案数 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
随机推荐
- 第二章epoll
epoll_create:函数实现分析 /* * Open an eventpoll file descriptor. */ SYSCALL_DEFINE1(epoll_create1, int, f ...
- c++与c
const char* c_str ( ) const; Get C string equivalent Generates a null-terminated sequence of charact ...
- JAVA程序员工作常用英语(细心整理)
基础----进阶 A. array数组accessible 可存取的 area面积audio 音频 addition 加法 action 行动 arithmetic 算法adjustment 调整 a ...
- 最多约数问题(Java)
Description 正整数x 的约数是能整除x 的正整数.正整数x的约数个数记为div(x).例如,1,2,5,10 都是正整数10的约数,且div(10)=4.设a 和b是2 个正整数,a≤b, ...
- kubernetes个人笔记(一)
一.证书工具 CFSSL keytools,openssl 1.介绍 CFSSL is CloudFlare's PKI/TLS swiss army knife. It is both a comm ...
- 从 Webpack 到 Snowpack, 编译速度提升十倍以上——TRPG Engine迁移小记
动机 TRPG Engine经过长久以来的迭代,项目已经显得非常臃肿了.数分钟的全量编译, 每次按下保存都会触发一次10s到1m不等的增量编译让我苦不堪言, 庞大的依赖使其每一次编译都会涉及很多文件和 ...
- 在Linux中输入命令时打错并按了enter
今天在Linux中输入命令时,打错一个单词了,之后出现一串串的~,按ESC也没用, 并在底部出现:quit<enter> to exit vim 解决办法: 按几下 esc 确保 vim ...
- phpmyadmin远程代码执行漏洞(CVE-2016-5734)
简介 环境复现:https://github.com/vulhub/vulhub 线上平台:榆林学院内可使用协会内部的网络安全实验平台 phpMyAdmin是一套开源的.基于Web的MySQL数据库管 ...
- MindManager教程:高中数学函数思维导图怎么画
说起函数,大家应该都不陌生吧,函数不论是在初中还是在高中都是需要重点学习的知识点,不仅仅是重点,更是作为难点曾出现在高考最后一道大题中.那今天我们就来做一个函数思维导图,来简单地了解一下关于函数的一些 ...
- 在IDM上设置防止过度抓取网站信息
在使用Internet Download Manager(IDM)下载器时,有时会发现IDM自带的抓取功能过于强大,以至于有时会抓取一些无效的链接.那么,该如何避免IDM的过度抓取呢? 图1:IDM的 ...