落谷 P4052 [JSOI2007]文本生成器
题目链接。只要有一个可读就行,容斥会好做一点。
可读数量 \(=\) 总数 \(-\) 不可读数量
总数显然是 \(26 ^ n\)。
求解不可读数量
不可读数量可以利用 AC 自动机的模型进行 DP,把 \(AC\) 自动机上所有串的终点及他们在 fail 树上的子树全部染上非法,这样即求在 AC 自动机上走 \(m\) 步,不经过非法点的方案数?
朴素 \(DP\) (或者说递推的思想):
\(f[i][j]\) 表示前 \(i\) 个字符,当前在 AC 自动机上的节点编号是 \(j\) 的方案数。
设 \(u\) 点走一步能到 \(v\),显然:\(f[i][v] = \sum f[i - 1][u]\)。
复杂度 \(O(2600MN)\) 即 \(2600 * 6000\) 差不多 \(1e7\) 的亚子轻松跑过。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int L = 6005, M = 105, S = 26, P = 10007;
int n, m, q[L], f[M][L], tr[L][S], idx, fail[L];
bool e[L];
char s[M];
void insert() {
int len = strlen(s + 1), p = 0;
for (int i = 1; i <= len; i++) {
int ch = s[i] - 'A';
if (!tr[p][ch]) tr[p][ch] = ++idx;
p = tr[p][ch];
}
e[p] = true;
}
void build() {
int hh = 0, tt = -1;
for (int i = 0; i < 26; i++)
if (tr[0][i]) q[++tt] = tr[0][i];
while (hh <= tt) {
int u = q[hh++];
for (int i = 0; i < 26; i++) {
int v = tr[u][i];
if (v) {
fail[v] = tr[fail[u]][i];
if (e[fail[v]]) e[v] = true;
q[++tt] = v;
} else tr[u][i] = tr[fail[u]][i];
}
}
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%s", s + 1);
insert();
}
build();
f[0][0] = 1;
for (int i = 0; i < m; i++) {
for (int u = 0; u <= idx; u++) {
if (e[u] || !f[i][u]) continue;
for (int k = 0; k < 26; k++) {
int v = tr[u][k];
if (e[v]) continue;
(f[i + 1][v] += f[i][u]) %= P;
}
}
}
int ans = 1;
for (int i = 1; i <= m; i++) ans = ans * 26 % P;
for (int i = 0; i <= idx; i++)
if (!e[i]) ans = (ans - f[m][i] + P) % P;
printf("%d\n", ans);
return 0;
}
落谷 P4052 [JSOI2007]文本生成器的更多相关文章
- 洛谷P4052 [JSOI2007]文本生成器 AC自动机+dp
正解:AC自动机+dp 解题报告: 传送门! 感觉AC自动机套dp的题还挺套路的,,, 一般就先跑遍AC自动机,然后就用dp dp的状态一般都是f[i][j]:有i个字符,是ac自动机上的第j个节点, ...
- 洛谷P4052 [JSOI2007]文本生成器(AC自动机)
传送门 好像这题的确只能用AC自动机做了……Aufun大佬太强啦 正着难我们反着做,用总共单词个数减去没有一个单词都不包含的 然后考虑怎么处理一个单词都不包含的,就是跑不到单词的结尾节点 定义$f[i ...
- [洛谷P4052][JSOI2007]文本生成器
题目大意:有$n$个字符串$s_i$,问有多少个长度为$m$的字符串至少包含$n$个字符串中的一个,字符集 A-Z .$s_i,m\leqslant100,n\leqslant60$ 题解:$AC$自 ...
- P4052 [JSOI2007]文本生成器
P4052 [JSOI2007]文本生成器 AC自动机+dp 优秀题解传送门 设f[ i ][ j ]表示串的长度为 i ,当前在 j 点时不可识别的串的方案数 最后用总方案数减去不可识别方案数就是答 ...
- 2021.11.11 P4052 [JSOI2007]文本生成器(AC自动机+DP)
2021.11.11 P4052 [JSOI2007]文本生成器(AC自动机+DP) https://www.luogu.com.cn/problem/P4052 题意: JSOI 交给队员 ZYX ...
- BZOJ 1030: [JSOI2007]文本生成器 [AC自动机 DP]
1030: [JSOI2007]文本生成器 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3953 Solved: 1614[Submit][Stat ...
- bzoj1030 [JSOI2007]文本生成器
1030: [JSOI2007]文本生成器 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2654 Solved: 1100[Submit][Stat ...
- JSOI2007文本生成器
1030: [JSOI2007]文本生成器 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1613 Solved: 656[Submit][Statu ...
- BZOJ 1030 [JSOI2007]文本生成器
1030: [JSOI2007]文本生成器 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2624 Solved: 1087[Submit][Stat ...
随机推荐
- NO.A.0001——day01——Java概述/进制间的转换
一.什么是JAVA语言: JAVA语言是美国sun公司(Stanford University Network)在1995年推出的高级编程语言.所谓编程语言,是计算机的语言,人们可以使用 ...
- SSY的队列 hash+记忆化
题目描述 \(SSY\) 是班集体育委员,总喜欢把班级同学排成各种奇怪的队形,现在班级里有 \(N\) 个身高互不相同的同学,请你求出这 \(N\) 个人的所有排列中任意两个相邻同学的身高差均不为给定 ...
- mds的cpu占用问题分析以及解决办法
前言 mds是ceph里面处理文件接口的组件,一旦使用文件系统,不可避免的会出现一种场景就是目录很多,目录里面的文件很多,而mds是一个单进程的组件,现在虽然有了muti mds,但稳定的使用的大部分 ...
- rbd的数据在哪里
创建一个rbd [root@mytest ~]# rbd create test1 --size 4000 查看rbd信息 [root@mytest ~]# rbd info test1 rbd im ...
- ImportError: No module named 'chardet'
1.使用requsets出现这个错误,ImportError: No module named 'chardet' 原因:requests依赖其他一些模块 解决:依次使用pip安装即可 pip ins ...
- jboss反序列化漏洞实战渗透笔记
一.利用shodan,fofa或谷歌搜索关键字:8080/jmx-console/ 二.下载java反序列化终极测试工具进行验证漏洞 三.记住User Current Directory: C:\j ...
- 直面秋招!非科班生背水一战,最终拿下阿里等大厂offer!
前言 2020年已经接近到9月份了,很多粉丝朋友都对金九银十雀雀欲试了吧!也有很多朋友向我求教经验,因为我自己工作相对于稳定,在这里给大家分享一个粉丝朋友的经历,他作为一个曾经的菜鸡面试者,在不断的失 ...
- ABBYY FineReader 14新增了什么
FineReader 是一款一体化的 OCR 和PDF编辑转换器,随着版本的更新,功能的增加,FineReader 14的推出继续为用户在处理文档时提高业务生产力,该版本包含若干新特性和功能增强,包括 ...
- Folx中与下载相关的参数如何设置
Folx是一款简单易用,功能强大的MacOS专用下载管理工具.要使Folx下载/上传速度快,同时又不影响其他软件的上网使用,还能够有计划地安排下载,那么就必须对Folx进行参数设置.接下来小编详细讲解 ...
- 前端(web)知识-html
前端由三部分组成: HTML(标签)--CSS(美化,修饰)--JS(执行指令) HTML(超文本标记语言,Hypertext Markup Language):是一种用于创建网页的标记语言. 本质上 ...